|教案下载
搜索
    上传资料 赚现金
    2021版高考数学苏教版一轮教师用书:10.4古典概型
    立即下载
    加入资料篮
    2021版高考数学苏教版一轮教师用书:10.4古典概型01
    2021版高考数学苏教版一轮教师用书:10.4古典概型02
    2021版高考数学苏教版一轮教师用书:10.4古典概型03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版高考数学苏教版一轮教师用书:10.4古典概型

    展开

    第四节 古典概型

    [最新考纲] 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用随机模拟的方法估计概率.

    1基本事件的特点

    (1)任何两个基本事件是互斥的.

    (2)任何事件(除不可能事件)都可以表示成基本事件的和.

    2古典概型的特点

    3古典概型的概率计算公式:

    P(A).

    一、思考辨析(正确的打“√”,错误的打“×”)

    (1)随机模拟方法是以事件发生的频率估计概率. (  )

    (2)掷一枚硬币两次,出现两个正面”“一正一反”“两个反面,这三个事件是等可能事件.              (  )

    (3)概率为0的事件一定是不可能事件. (  )

    (4) 从市场上出售的标准为500±5 g的袋装食盐中任取一袋测其重量,属于古典概型.                            (  )

    [答案](1) (2)× (3)× (4)×

    二、教材改编

    1.一枚硬币连掷2次,只有一次出现正面的概率为(  )

    A.          B.

    C.   D.

    D [一枚硬币连掷2次可能出现(正,正)(反,反)(正,反)(反,正)四种情况,只有一次出现正面的情况有两种,故P.]

    2.为美化环境,从红、黄、白、紫4种颜色的花中任选2种颜色的花种在一个花坛中,余下的2种颜色的花种在另一个花坛中,则红色和紫色的花种在同一花坛的概率是(  )

    A.   B.   C.   D.

    C [把这4种颜色的花种在两个花坛中的所有情况为(红,黄)(白,紫)(红,白)(黄,紫)(红,紫)(黄,白)(黄,白)(红,紫)(黄,紫)(红,白)(白,紫)(红,黄),共有6种,其中红色和紫色的花种在同一花坛的情况有2种,所以红色和紫色的花种在同一花坛的概率P,故选C.]

    3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为(  )

    A.   B.

    C.   D.

    A [从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P.]

    4.同时掷两个骰子,向上点数不相同的概率为       

     [掷两个骰子一次,向上的点数共6×636()可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P1.]

    考点1 简单的古典概型

     计算古典概型事件的概率可分3

    (1)计算基本事件总个数n

    (2)计算事件A所包含的基本事件的个数m

    (3)代入公式求出概率P.

    提醒:解题时可根据需要灵活选择列举法、列表法或树形图法.

     (1)甲在微信群中发布6拼手气红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得手气最佳(即乙领取的钱数不少于其他任何人)的概率是(  )

    A.   B.   C.   D.

    (2)(2017·全国卷)从分别写有1,2,3,4,55张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(  )

    A.   B. 

    C.   D.

    (3)(2019·全国卷)我国古代典籍《周易》用描述万物的变化.每一重卦由从下到上排列的6个爻组成,爻分为阳爻——和阴爻--,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是(  )

    A.   B. 

    C.   D.

    (1)D (2)D (3)A [(1)(xyz)表示乙、丙、丁抢到的红包分别为x元、y元、z元.

    乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4)(1,4,1)(4,1,1)(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)(2,2,2)

    乙获得手气最佳的所有不同的可能结果有4种,分别为(4,1,1)(3,1,2)(3,2,1)(2,2,2)

    根据古典概型的概率计算公式,得乙获得手气最佳的概率P.

    (2)5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:

    基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10

    所求概率P.故选D.

    (3)6个爻组成的重卦种数为2664,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C20.根据古典概型的概率计算公式得,所求概率P.故选A.]

     古典概型中基本事件个数的探求方法

    (1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.

    (2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(xy)可看成是有序的,如(1,2)(2,1)不同,有时也可看成是无序的,如(1,2)(2,1)相同.

    (3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.

    [教师备选例题]

    1设平面向量a(m,1)b(2n),其中mn{1,2,3,4},记a(ab)为事件A,则事件A发生的概率为(  )

    A.      B.      C.      D.

    A [有序数对(mn)的所有可能结果为:(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4),共16个.由a(ab),得m22m1n0,即n(m1)2,由于mn{1,2,3,4},故事件A包含的基本事件为(2,1)(3,4),共2个,所以所求的概率P(A).]

    2.用1,2,3,4,5组成无重复数字的五位数,若用a1a2a3a4a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1a2a3a4a5特征的五位数的概率为       

     [1,2,3,4,5可组成A120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有CC6个,故出现a1a2a3a4a5特征的五位数的概率为.]

     1.(2019·武汉模拟)7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为(  )

    A.   B. 

    C.   D.

    C [7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C种放法,甲盒中恰好有3个小球有C种放法,结合古典概型的概率计算公式得所求概率为.故选C.]

    2.已知a{0,1,2}b{1,1,3,5},则函数f(x)ax22bx在区间(1,+)上为增函数的概率是(  )

    A.   B. 

    C.   D.

    A [a{0,1,2}b{1,1,3,5}

    基本事件总数n3×412.

    函数f(x)ax22bx在区间(1,+)上为增函数,

    a0时,f(x)=-2bx,符合条件的只有(0,-1),即a0b=-1

    a0时,需要满足1,符合条件的有(1,-1)(1,1)(2,-1)(2,1),共4种.

    函数f(x)ax22bx在区间(1,+)上为增函数的概率是P.]

    考点2 古典概型与统计的综合

     求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,其解题流程为:

      (2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.

    (1)应从老、中、青员工中分别抽取多少人?

    (2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为ABCDEF.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.

    员工

    项目  

    A

    B

    C

    D

    E

    F

    子女教育

    ×

    ×

    继续教育

    ×

    ×

    ×

    大病医疗

    ×

    ×

    ×

    ×

    ×

    住房贷款利息

    ×

    ×

    住房租金

    ×

    ×

    ×

    ×

    ×

    赡养老人

    ×

    ×

    ×

    ()试用所给字母列举出所有可能的抽取结果;

    ()M为事件抽取的2人享受的专项附加扣除至少有一项相同,求事件M发生的概率.

    [](1)由已知,老、中、青员工人数之比为6910

    由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.

    (2)()从已知的6人中随机抽取2人的所有可能结果为{AB}{AC}{AD}{AE}{AF}{BC}{BD}{BE}{BF}{CD}{CE}{CF}{DE}{DF}{EF},共15种.

    ()由表格知,符合题意的所有可能结果为

    {AB}{AD}{AE}{AF}{BD}{BE}{BF}{CE}{CF}{DF}{EF},共11种.

    所以,事件M发生的概率P(M).

     有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.

    [教师备选例题]

    某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.

    (1)根据茎叶图计算样本数据的平均数;

    (2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;

    (3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.

    [](1)由题意知,样本数据的平均数

    12.

    (2)样本中优秀服务网点有2个,概率为,由此估计这90个服务网点中优秀服务网点有90×30()

    (3)样本中优秀服务网点有2个,分别记为a1a2,非优秀服务网点有4个,分别记为b1b2b3b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1a2)(a1b1)(a1b2)(a1b3)(a1b4)(a2b1)(a2b2)(a2b3)(a2b4)(b1b2)(b1b3)(b1b4)(b2b3)(b2b4)(b3b4),共15种,

    恰有1个是优秀服务网点为事件M,则事件M包含的可能情况有:(a1b1)(a1b2)(a1b3)(a1b4)(a2b1)(a2b2)(a2b3)(a2b4),共8种,

    故所求概率P(M).

     移动公司拟在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.

    (1)求从中任选1人获得优惠金额不低于300元的概率;

    (2)若采用分层抽样的方式从参加活动的客户中选出6

    人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率.

    [](1)设事件A从中任选1 人获得优惠金额不低于300,则P(A).

    (2)设事件B从这6人中选出2人,他们获得相等优惠金额,由题意按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为a1b1b2b3c1c2,从中选出2人的所有基本事件如下:a1b1a1b2a1b3a1c1a1c2b1b2b1b3b1c1b1c2b2b3b2c1b2c2b3c1b3c2c1c2,共15个.

    其中使得事件B成立的有b1b2b1b3b2b3c1c2,共4个.则P(B).

    故这2人获得相等优惠金额的概率为.

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021版高考数学苏教版一轮教师用书:10.4古典概型
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map