终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021版江苏高考物理一轮复习讲义:第3章第3节 牛顿运动定律的综合应用

    立即下载
    加入资料篮
    2021版江苏高考物理一轮复习讲义:第3章第3节 牛顿运动定律的综合应用第1页
    2021版江苏高考物理一轮复习讲义:第3章第3节 牛顿运动定律的综合应用第2页
    2021版江苏高考物理一轮复习讲义:第3章第3节 牛顿运动定律的综合应用第3页
    还剩21页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版江苏高考物理一轮复习讲义:第3章第3节 牛顿运动定律的综合应用

    展开

    3节 牛顿运动定律的综合应用 动力学中整体法、隔离法的应用 1整体法的选取原则及解题步骤(1)当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。(2)运用整体法解题的基本步骤:2隔离法的选取原则及解题步骤(1)当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。(2)运用隔离法解题的基本步骤:明确研究对象或过程、状态。将某个研究对象或某段运动过程、某个状态从系统或全过程中隔离出来。画出某状态下的受力图或运动过程示意图。选用适当的物理规律列方程求解。 (多选)(2019·保定一模)如图所示,一质量M3 kg、倾角为α45°的斜面体放在光滑水平地面上,斜面体上有一质量为m1 kg的光滑楔形物体。用一水平向左的恒力F作用在斜面体上,系统恰好保持相对静止地向左运动。重力加速度取g10 m/s2,下列判断正确的是(  )A.系统做匀速直线运动BF40 NC.斜面体对楔形物体的作用力大小为5 ND.增大力F,楔形物体将相对斜面体沿斜面向上运动关键信息光滑水平地面”“水平向左的恒力F,两条信息表明整体向左匀加速运动。[解析] 对整体受力分析如图甲所示,由牛顿第二定律有F(Mm)a,对楔形物体受力分析如图乙所示。由牛顿第二定律有mgtan 45°ma,可得F40 Na10 m/s2A错误,B正确;斜面体对楔形物体的作用力FN2mg10 NC错误;外力F增大,则斜面体加速度增加,由于斜面体与楔形物体间无摩擦力,则楔形物体将会相对斜面体沿斜面上滑,D正确。甲     乙[答案] BD1处理连接体问题时,整体法与隔离法往往交叉使用,一般的思路是先用整体法求加速度,再用隔离法求物体间的作用力。2隔离法分析物体间的作用力时,一般应选受力个数较少的物体进行分析。 先整体后隔离法的应用1.(2019·盐城四模)质量相同的甲、乙两个木块与水平桌面间的动摩擦因数相同。在水平推力F作用下做加速度为a的匀加速直线运动,现去掉乙木块,其他不变,则加速度的大小a(  )Aa>2a   Ba2aCaa   Da<2aA [根据牛顿第二定律:对甲、乙的整体:F2μmg2ma;去掉乙木块:Fμmgma;两式相减解得ma2maμmg>0,即a>2a,故选A]2(多选)(2019·商洛质检)如图所示,在粗糙的水平面上,质量分别为mM的物块AB用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是(  )A.若m>M,有x1x2B.若m<M,有x1x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2AB [在水平面上滑动时,对整体,根据牛顿第二定律,有Fμ(mM)g(mM)a1  隔离物块A,根据牛顿第二定律,有FTμmgma1  联立①②解得FTF  在斜面上滑动时,对整体,根据牛顿第二定律,有F(mM)gsin θ(mM)a2  隔离物块A,根据牛顿第二定律,有FTmgsin θma2  联立④⑤解得FTF  比较③⑥可知,弹簧弹力相等,与动摩擦因数和斜面的倾角无关,故AB正确,CD错误。] 先隔离后整体法的应用3.(2019·南通模拟)如图所示,质量为m2的物块B放在光滑的水平桌面上,其上放置质量为m1的物块A,用通过光滑的定滑轮的细线将A与质量为M的物块C连接,释放CAB一起以加速度大小a从静止开始运动,已知AB间的动摩擦因数为μ,重力加速度大小为g,则细线中的拉力大小为(  )AMg   BM(ga)C(m1m2)a   Dm1aμm1gC [C为研究对象,有MgTMa,解得TMgMa,故AB错误;以AB整体为研究对象,根据牛顿第二定律可知T(m1m2)a,故C正确;AB间为静摩擦力,根据牛顿第二定律,对B可知fm2aμm1g,故D错误。]4.如图甲所示,质量为m0的小车放在光滑水平面上,小车上用细线悬吊一质量为m的小球,m0>m,用一力F水平向右拉小球,使小球和车一起以加速度a向右运动时,细线与竖直方向成α角,细线的拉力为FT。若用一力F水平向左拉小车,使小球和车一起以加速度a向左运动时,细线与竖直方向也成α角,如图乙所示,细线的拉力为FT。则(  )甲         乙AFFFTFT   BF>FFTFTCF<FFT>FT   DF<FFT<FTB [对小球进行受力分析,由于小球竖直方向上所受合力为零,可知FTcos αmgFTcos αmg,所以FTFT。对于题图乙中的小球,水平方向有FTsin αma,对于题图甲中的小车,水平方向有FTsin αm0a,因为m0>m,所以a>a。对小球与车组成的整体,由牛顿第二定律得F(m0m)aF(m0m)a,所以F>F,选项B正确。] 动力学中的图象问题 1常见的动力学图象v­t图象、a­t图象、F­t图象、F­a图象等。2图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况。(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况。(3)由已知条件确定某物理量的变化图象。3解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点。(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等。(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确图象与公式”“图象与物体间的关系,以便对有关物理问题作出准确判断。 (多选)(2019·全国卷)如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t0时,木板开始受到水平外力F的作用,在t4 s时撤去外力。细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s2。由题给数据可以得出(  )(a)(b)        图(c)A.木板的质量为1 kgB24 s内,力F的大小为0.4 NC02 s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2思路点拨解此题关键有两点:(1)明确f­t图象和v­t图象的信息,并做好运动分析和受力分析。(2)分段研究木板的加速度和应用牛顿第二定律求解。[解析] 分析知木板受到的摩擦力ff02 s内,木板静止,FfF逐渐增大,所以C错误。45 s内,木板加速度大小a2 m/s20.2 m/s2,对木板受力分析,fma20.2 N,得m1 kg,所以A正确。24 s内,对木板Ffma1Ffma10.2 N1× N0.4 N,所以B正确。由于无法确定物块的质量,则尽管知道滑动摩擦力大小,仍无法确定物块与木板间的动摩擦因数,故D错误。[答案] AB动力学图象问题的解题策略 动力学中的F­t图象1(多选)(2019·龙岩质检)质量m2 kg的物块在粗糙的水平地面上运动,t0时刻开始受到方向相反的水平拉力F1F2的作用,以3 m/s的速度做匀速直线运动,F1F2随时间t的变化规律如图所示,取g10 m/s2,则下列说法正确的是(  )A.物块与地面间的动摩擦因数为0.3B3 s末物块的加速度大小为1.5 m/s2C5 s末物块的速度大小为1.5 m/sD5 s内物块的位移大小为9 mBD [本题考查根据物体受力图象分析运动问题。02 s内,由物块处于平衡状态可得F1F2μmg0,代入数据解得μ0.2,故A错误;3 s末物块的加速度大小为a1.5 m/s2,故B正确;24 s内物块的加速度大小都为a1.5 m/s2,所以物块减速到0的时间为t2 s2 s,即物块在4 s末速度减为0,接下来物块处于静止状态,故C错误;5 s内物块的位移大小等于4 s内物块的位移大小,即为 m9 m,故D正确。] 动力学中的v­t图象2(2019·潍坊一中摸底)如图甲所示,水平地面上固定一带挡板的长木板,一轻弹簧左端固定在挡板上,右端接触滑块,弹簧被压缩0.4 m后锁定,t0时解除锁定,释放滑块。计算机通过滑块上的速度传感器描绘出滑块的v­t图象如图乙所示,其中Oab段为曲线,bc段为直线,倾斜直线Odt0时的速度图线的切线,已知滑块质量m2.0 kg,取g10 m/s2,则下列说法正确的是(  )甲          乙A.滑块被释放后,先做匀加速直线运动,后做匀减速直线运动B.弹簧恢复原长时,滑块速度最大C.弹簧的劲度系数k175 N/mD.该过程中滑块的最大加速度为35 m/s2C [根据v­t图线的斜率表示加速度可知,滑块被释放后,先做加速度逐渐减小的加速直线运动,弹簧弹力与摩擦力相等时速度最大,此时加速度为零,随后加速度反向增加,从弹簧恢复原长时到滑块停止运动,加速度不变,选项AB错误;由题中图象知,滑块脱离弹簧后的加速度大小a1 m/s25 m/s2,由牛顿第二定律得摩擦力大小为Ffμmgma12×5 N10 N,刚释放时滑块的加速度大小为a2 m/s230 m/s2,此时滑块的加速度最大,选项D错误;由牛顿第二定律得kxFfma2,代入数据解得k175 N/m,选项C正确。] 动力学中的a­t图象3.广州塔,昵称小蛮腰,总高度达600 m,游客乘坐观光电梯大约一分钟就可以到达观光平台。若电梯简化成只受重力与绳索拉力,已知电梯在t0时由静止开始上升,a­t图象如图所示。则下列相关说法正确的是(  )At4.5 s时,电梯处于失重状态B555 s时间内,绳索拉力最小Ct59.5 s时,电梯处于超重状态Dt60 s时,电梯速度恰好为零D [利用a­t图象可判断:t4.5 s时,电梯有向上的加速度,电梯处于超重状态,则选项A错误;05 s时间内,电梯处于超重状态,拉力大于重力,555 s时间内,a0,电梯处于匀速上升阶段,拉力等于重力,5560 s时间内,电梯处于失重状态,拉力小于重力,综上所述,选项BC错误;因a­t图线与t轴所围的面积代表速度改变量,而图中横轴上方的面积与横轴下方的面积相等,则电梯的速度在t60 s时为零,选项D正确。] 动力学中的a­F图象4(2019·江西四校联考)如图甲所示,用一水平外力F推物体,使其静止在倾角为θ的光滑斜面上。逐渐增大F,物体开始做变加速运动,其加速度aF变化的图象如图乙所示。取g10 m/s2。根据图中所提供的信息不能计算出的是(  )甲       乙A.物体的质量B.斜面的倾角C.使物体静止在斜面上时水平外力F的大小D.加速度为6 m/s2时物体的速度D [对物体受力分析,受推力、重力、支持力,如图所示x方向:Fcos θmgsin θma y方向:FNFsin θmgcos θ0 a­F图象中取两个点(20 N2 m/s2)(30 N,6 m/s2)代入式解得:m2 kgθ37°因而AB可以算出;a0时,可解得F15 N,因而C可以算出;题中并未说明力F随时间变化的情况,故无法求出加速度为6 m/s2时物体的速度大小,因而D不可以算出。] 动力学中的临界、极值问题 1动力学中常见临界极值条件的标志(1)有些题目中有刚好”“恰好”“正好等字眼,即表明题述的过程存在着临界点。(2)若题目中有取值范围”“多长时间”“多大距离等词语,表明题述的过程存在着起止点,而这些起止点往往对应临界状态。(3)若题目中有最大”“最小”“至多”“至少等字眼,表明题述的过程存在着极值,这个极值点往往是临界点。(4)若题目要求最终加速度”“稳定速度等,即是求收尾加速度或收尾速度。2处理临界问题的三种方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是有非此即彼两种可能时,或变化过程中可能出现临界条件、也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,如(1)三角函数法;(2)根据临界条件列不等式法;(3)利用二次函数的判别式法 如图所示,一弹簧一端固定在倾角为θ37°的光滑固定斜面的底端,另一端拴住质量为m14 kg的物体PQ为一质量为m28 kg的物体,弹簧的质量不计,劲度系数k600 N/m,系统处于静止状态。现给Q施加一个方向沿斜面向上的力F,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2 s时间内,F为变力,0.2 s以后F为恒力,已知sin 37°0.6cos 37°0.8,取g10 m/s2。求力F的最大值与最小值。审题指导题干关键获取信息光滑固定斜面无滑动摩擦力系统处于静止状态可求出弹簧的压缩量从静止开始沿斜面向上做匀加速运动初速度为零,加速度恒定0.2 s以后F为恒力经过0.2 sPQ恰好分离F的最大值与最小值t0时拉力最小,分离后拉力最大[解析] 设开始时弹簧的压缩量为x0由平衡条件得(m1m2)gsin θkx0代入数据解得x00.12 m因前0.2 s时间内F为变力,之后为恒力,则0.2 s时刻两物体分离,此时PQ之间的弹力为零,设此时弹簧的压缩量为x1对物体P,由牛顿第二定律得kx1m1gsin θm1a0.2 s时间内两物体的位移x0x1at2联立解得a3 m/s2对两物体受力分析知,开始运动时拉力最小,分离时拉力最大Fmin(m1m2)a36 NQ应用牛顿第二定律得Fmaxm2gsin θm2a解得Fmaxm2(gsin θa)72 N[答案] 72 N 36 N动力学中几种典型的临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力FN0(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是FT0(4)加速度变化时,速度达到最值的临界条件是加速度变为01.(2019·临沂二模)如图所示,静止在光滑水平面上的斜面体,质量为M、倾角为α,其斜面上有一静止的滑块,质量为m,重力加速度为g。现给斜面体施加水平向右的力使斜面体加速运动,若要使滑块做自由落体运动,图中水平向右的力F的最小值为(  )A.   BC.   DMgA [设滑块到斜面体底端的距离为l,滑块做自由落体运动到达地面时竖直方向的位移为lsin α,在水平向右的力F的最小值作用下,斜面体在水平方向的位移恰好为lcos α。对滑块有:lsin αgt2,对斜面体有:lcos αat2FMa,解得F,故选项A正确。]2.(多选)(2019·衡阳一中月考)如图所示,轻弹簧的一端固定在倾角为θ30°的光滑斜面的底部,另一端和质量为m的小物块a相连,质量为m的小物块b紧靠a静止在斜面上,此时弹簧的压缩量为x0,从某时刻开始,对b施加沿斜面向上的外力F,使b始终做匀加速直线运动。经过一段时间后,物块ab分离;再经过同样长的时间,b距其出发点的距离恰好也为x0,弹簧的形变始终在弹性限度内,重力加速度大小为g。则(  )A.弹簧的劲度系数kB.弹簧恢复原长时物块ab恰好分离C.物块b的加速度为D.拉力F的最小值为mgAD [本题考查含弹簧系统的临界问题。对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有kx0gsin θ,解得k,故A正确;由题意可知,b经两段相等的时间后位移为x0,设分离前位移为x1,由初速度为零的匀变速直线运动在相邻相等时间内位移关系的规律可知,说明当弹簧形变量为x2x0x1时二者分离,故B错误;对a分析,因分离时ab间没有弹力,则根据牛顿第二定律可知kx2mgsin θma,联立解得a,故C错误;ab分离前对整体分析,由牛顿第二定律有FkΔxgsin θa,则知刚开始运动时拉力F最小,F的最小值Fminmg;分离后对b分析,由牛顿第二定律有Fmgsin θma,解得Fmg,所以拉力F的最小值为mg,故D正确。]3.如图所示,木块AB静止叠放在光滑水平面上,A的质量为mB的质量为2m。现施加水平力FB(如图甲)AB刚好不发生相对滑动,一起沿水平面运动。若改用水平力FA(如图乙),使AB也保持相对静止,一起沿水平面运动,则F不得超过(  )甲          乙A2F   BC3F   DB [F拉物体B时,AB恰好不滑动,故AB间的静摩擦力达到最大值,对物体A受力分析,受重力mg、支持力FN1、向前的静摩擦力fm,根据牛顿第二定律,有fmma  AB整体受力分析,受重力3mg、支持力和拉力F,根据牛顿第二定律,有F3ma                            ①②解得fmFF作用在物体A上,AB恰好不滑动时,AB间的静摩擦力达到最大值,对物体A,有Ffmma1  对整体,有F3ma1  由上述各式联立解得FfmF,即F的最大值是F] 传送带模型1水平传送带问题求解的关键在于对物体所受的摩擦力进行正确的分析判断。判断摩擦力时要注意比较物体的运动速度与传送带的速度。物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。2倾斜传送带问题求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用,如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。[示例1] 一传送带装置如图所示,其中AB段是水平的,长度LAB4 mBC段是倾斜的,长度LBC5 m,倾角为θ37°ABBCB点通过一段短的圆弧连接(图中未画出圆弧),传送带以v4 m/s的恒定速率顺时针运转,已知工件与传送带间的动摩擦因数μ0.5,重力加速度g10 m/s2。现将一个工件(可看作质点)无初速度地放在A点,求:(1)工件第一次到达B点所用的时间;(2)工件沿传送带上升的最大高度;(2)工件运动了23 s后所在的位置。[规范解答] (1)工件刚放在水平传送带上的加速度大小为a1,由牛顿第二定律得μmgma1解得a1μg5 m/s2t1时间工件与传送带的速度相同,解得t10.8 s工件前进的位移为x1a1t1.6 m此后工件将与传送带一起匀速运动至B点,用时t20.6 s所以工件第一次到达B点所用的时间tt1t21.4 s(2)在倾斜传送带上工件的加速度为a2,由牛顿第二定律得μmgcos θmgsin θma2解得a2=-2 m/s2由速度位移公式得0v22a2解得hm2.4 m(3)工件沿传送带向上运动的时间为t32 s此后由于工件在传送带的倾斜段运动时的加速度相同,在传送带的水平段运动时的加速度也相同,故工件将在传送带上做往复运动,其周期为T,则T2t12t35.6 s工件从开始运动到第一次返回传送带的水平部分,且速度变为零所需时间t02t1t22t36.2 s,而23 st03T,这说明经过23 s后工件恰好运动到传送带的水平部分,且速度为零,故工件在A点右侧,到A点的距离xLABx12.4 m[答案] (1)1.4 s (2)2.4 m (3)A点右侧2.4 m[即时训练]1.如图所示,倾角为37°、长为l16 m的传送带,转动速度恒为v10 m/s,在传送带顶端A处无初速度地释放一个质量为m0.5 kg的物体(可视为质点),已知物体与传送带间的动摩擦因数μ0.5,取g10 m/s2。求:(sin 37°0.6cos 37°0.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间。[解析] (1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mgsin 37°μmgcos 37°maagsin 37°μgcos 37°2 m/s2根据lat2t4 s(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得mgsin 37°μmgcos 37°ma1则有a1gsin 37°μgcos 37°10 m/s2设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1则有t1 s1 sx1a1t5 m<l16 m当物体运动速度等于传送带速度瞬间,有mgsin 37°>μmgcos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变。设当物体下滑速度达到传送带转动速度时物体的加速度变为a2,则mgsin 37°μmgcos 37°ma2a2gsin 37°μgcos 37°2 m/s2x2lx111 m又因为x2vt2a2t则有10t2t11解得t21 s(t2=-11 s舍去)所以tt1t22 s[答案] (1)4 s (2)2 s 滑块木板模型1模型特点涉及两个物体,并且物体间存在相对滑动。2两种位移关系滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长。设板长为L,滑块位移大小为x1,木板位移大小为x2同向运动时:Lx1x2反向运动时:Lx1x2[示例2] (2015·全国卷)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m,如图(a)所示。t0时刻开始,小物块与木板一起以共同速度向右运动,直至t1 s时木板与墙壁碰撞(碰撞时间极短)。碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。已知碰撞后1 s时间内小物块的v­t图线如图(b)所示。木板的质量是小物块质量的15倍,重力加速度大小g10 m/s2。求:(a)       图(b)(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2(2)木板的最小长度;(3)木板右端离墙壁的最终距离。[大题拆分] 第一步:分析研究对象模型。设小物块和木板的质量分别为mM。小物块可以看作质点(初始条件v0未知,如图甲所示)第二步:分解过程模型。(1)认为地面各点的粗糙程度相同,小物块和木板一起向右做匀变速运动,到速度大小为v1,如图乙所示。(2)木板与墙壁碰撞过程:小物块受到滑动摩擦力(设置的初始条件),由于碰撞时间极短t0),故碰后小物块速度不变,木板的速度方向突变(设置的初始条件),如图丙所示。(3)然后小物块向右减速,木板向左减速,经1 s小物块速度减小为零(如图丁所示)  由于木板的加速度较小,故小物块速度为零时,木板仍有速度。然后小物块向左加速,木板向左减速,到二者达到共同速度v3(如图戊所示)(4)分析临界条件,包括时间关系和空间关系,如图戊所示。(5)在小物块和木板具有共同速度后,两者向左做匀变速直线运动直至停止(如图己所示)[解析] (1)根据图象可以判定碰撞前小物块与木板共同速度为v4 m/s碰撞后木板速度水平向左,大小也是v4 m/s小物块受到滑动摩擦力而向右做匀减速直线运动,加速度大小a2 m/s24 m/s2根据牛顿第二定律有μ2mgma2,解得μ20.4木板与墙壁碰撞前,匀减速运动时间t1 s,位移x4.5 m,末速度v4 m/s其逆运动则为匀加速直线运动,可得xvta1t2解得a11 m/s2对小物块和木板整体受力分析,地面对木板的滑动摩擦力提供合外力,由牛顿第二定律得:μ1(m15m)g(m15m)a1,即μ1ga1解得μ10.1(2)碰撞后,木板向左做匀减速运动,依据牛顿第二定律有μ1(15mm)gμ2mg15ma3可得a3 m/s2对滑块,加速度大小为a24 m/s2由于a2>a3,所以滑块速度先减小到0,所用时间为t11 s的过程中,木板向左运动的位移为x1vt1a3t m,末速度v1va3t1 m/s滑块向右运动的位移x2t12 m此后,小物块开始向左加速,加速度大小仍为a24 m/s2木板继续减速,加速度大小仍为a3 m/s2假设又经历t2二者速度相等,则有a2t2v1a3t2解得t20.5 s此过程中,木板向左运动的位移x3v1t2a3t m末速度v3v1a3t22 m/s滑块向左运动的位移x4a2t0.5 m此后小物块和木板一起匀减速运动,二者的相对位移最大为Δxx1x2x3x46 m小物块始终没有离开木板,所以木板最小的长度为6 m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度大小为a11 m/s2向左运动的位移为x52 m所以木板右端离墙壁最远的距离为xx1x3x56.5 m[答案] (1)0.1 0.4 (2)6 m (3)6.5 m[即时训练]2(2019·江苏东台期末)如图甲所示,一水平长木板静止在光滑水平面上。现有一小铁块(可视为质点)从木板左端以v04 m/s的水平初速度向右滑上木板,从此时刻开始计时,之后小铁块和木板运动的v­t图象如图乙所示。则:甲       乙(1)铁块和木板匀变速运动时的加速度各是多大?(2)从开始计时起0.5 s内铁块相对于木板滑行的距离是多少?(3)若铁块以v04 m/s水平初速度滑上木板时,木板也具有一水平速度,其方向向左,大小为v1 m/s。最终两者达共同速度不再发生相对滑动,则木板至少要多长铁块才不会滑下木板?[解析] (1)铁块加速度大小a16 m/s2木板加速度大小a22 m/s2(2)铁块滑行x1v0ta1t2木板滑行x2a2t2Δxx1x2 解得Δx 1 m(3)木板向左减速到速度为零 t10.5 sx3t10.25 m铁块向右减速v1v0a1t11 m/sx4t11.25 m此后铁块向右减速,木板向右加速,经t2两者速度相等v1a1t2a2t2得:t20.125 sv0.25 m/s铁块向右位移x5t2 m木块向右位移x6t2 m木板至少长度lx3x4x5x6 m1.562 5 m[答案] (1)6 m/s2 2 m/s2 (2)1 m (3)1.562 5m  

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map