2020年北师大版八年级数学上册 期中复习试卷六(含答案)
展开
2020年北师大版八年级数学上册 期中复习试卷六一、选择题(共10小题,每小题3分,计30分)1.在﹣2,,,3.14,,,这6个数中,无理数共有( )A.4个 B.3个 C.2个 D.1个2.以下列数组作为三角形的三条边长,其中能构成直角三角形的是( )A.1,,3 B.,,5 C.1.5,2,2.5 D.,,3.无理数的大小在以下两个整数之间( )A.1与2 B.2与3 C.3与4 D.4与54.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+ B.2+ C.2﹣1 D.2+15.下列各曲线中表示y是x的函数的是( )A. B. C.D.6.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积是( )A.8π cm2 B.12π cm2 C.16π cm2 D.18π cm27.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为( )A.(﹣,1) B.(﹣1,) C.(,1) D.(﹣,﹣1)8.点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为( )A.(0,﹣9) B.(﹣6,﹣1) C.(1,﹣2) D.(1,﹣8)9.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是( )A.(2,1) B.(1,2) C.(,1 ) D.(1, )10.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或10二、填空题(共6小题,每小题3分,计18分)11.﹣的相反数是 ;倒数是 ;绝对值是 .12.若a、b为实数,且b=+4,则a+b的值为 .13.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2015的值为 .14.在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为 .15.已知A(2,0),B(0,2),在x轴上确定点M,使三角形MAB是等腰三角形,则M点的坐标为 (任写一个).16.如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为 .三、解答题:(共8小题,计72分)17.(8分)计算:(1)×(9) (2)﹣×. 18.(10分)计算:(1)2×(3﹣4﹣3) (2)(1+)(1﹣)+(+2)0+|2﹣|+. 19.(6分)在数轴上画出表示的点. (要画出作图痕迹) 20.(8分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米? 21.(9分)△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标. 22.(9分)已知,如图在平面直角坐标系中,S△ABO=6,OA=OB,BC=12,求△ABC三个顶点的坐标. 23.(10分)如图,D为△ABC的BC边上的一点,AB=10,AD=6,DC=2AD,BD=DC.(1)求BD的长;(2)求△ABC的面积. 24.(12分)我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?
参考答案1.C.2.C.3.A.4.D.5.D.6.D.7.A.8.A.9.D.10.C.11.答案为:﹣2(),,2().12.答案为:3.13.答案为:﹣1.14.答案为:1.15.(0,0)(﹣2,0)(2+2,0),(﹣2+2,0).16.30.17.解:(1)原式=×9×=45;(2)原式=﹣=1﹣.18.解:(1)原式=4×(12﹣﹣9)=4×(3﹣)=36﹣4.(2)原式=1﹣2+1+(2﹣)+()=2﹣++=2+.19.解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是.20.解:设秆长x米,则城门高(x﹣1)米,根据题意得x2=(x﹣1)2+32,解得x=5答:秆长5米.21.解:(1)A(0,3);B(﹣4,4);C(﹣2,1);(2)如图:B1的坐标为:(4,4);(3)如图:A2(0,﹣3).22.解:∵S△ABO=OB•OA=6,OA=OB,∴OA=OB=2,∴A(0,2)、B(﹣2,0).∵BC=12,∴OC=BC﹣OB=12﹣2,∴C(12﹣2,0).综上所述,A(0,2)、B(﹣2,0)、C(12﹣2,0).23.解:(1)∵AD=6,DC=2AD,∴DC=12,∵BD=DC,∴BD=8;(2)在△ABD中,AB=10,AD=6,BD=8,∵AB2=AD2+BD2,∴△ABD为直角三角形,即AD⊥BC,∵BC=BD+DC=8+12=20,AD=6,∴S△ABC=×20×6=60.24.解:(1)根据题意可知:当0<x≤6时,y=2x;(2)根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6;(3)∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.