陕西省西安中学2020届高三第三次模拟考试数学(理)试题
展开
西安中学高2020届高三第三次模考数学(理)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足,则( )[来源:学.科.网Z.X.X.K]A.1 B. C. D.2.已知集合,.若,则实数( ) A. B. C. D.3.在等比数列中,已知,,则( )A.243 B.128 C.81 D.644.函数的大致图像为( )5.函数在区间内单调递减,则的取值范围为( ) A. B. C. D.6.若,,,则( ) A. B. C. D.7.已知的内角所对的边分别为.若,,,则角大小为( ) A. B. C. D. 8.若实数满足约束条件,则的最大值为( )A. B. C. D.9.若,则( ) A. B. C. D.10.已知三棱锥且平面,其外接球体积为( ) A. B. C. D.11.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( ) A. B. C. D.12.已知函数,,给出下列四个结论,分别是:①;②在上单调;③有唯一零点;④存在,使得.其中有且只有一个是错误的,则错误的一定不可能是( )A.① B.② C.③ D.④第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分.13.若向量,,且,则实数 .14.的展开式中的系数为 .15.已知定义在R上的偶函数在上单调递增,且,则不等式的解集是 . 16.如图所示,点,分别在的边,上,,,从菱形所在区域随机地取一个点,记事件“所取点位于区域 ”的概率为P,则:①当为边中点时,P= ______;②P的最小值为 . (本题第一空2分,第二空3分) 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知数列满足,,设.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和. 18.(本小题满分12分)如图1,在中,,分别为边,的中点,为的中点, ,.将沿折起到的位置,如图2,使得平面平面,为的中点.(Ⅰ)求证: 平面;(Ⅱ)求二面角的余弦值. 19.(本小题满分12分)全球疫情下,作为口罩的“心脏”——熔喷布需求量激增,由于供应不足,导致熔喷布价格从1.8万元/吨上涨到了30多万元/吨,原材料价格高企成为提高口罩产能的最大阻碍.4月10日,据《科技日报》报道,一种可以替代熔喷布的新型纳米过滤材料由河南曼博睿新材料科技有限公司研发成功.按照国家医用外科口罩标准(YY0469-2011)要求,细菌过滤效果和非油性颗粒过滤效果达到95%和30%即为合格,这种新型纳米过滤材料的过滤效果分别可以达到99.5%和78%,超过了国家标准.这种新型材料采用与熔喷布完全不同的原材料与工艺,不受上游设备和原材料供应的制约,且生产建设周期短.目前产品已正式投入量产,初期产能为每天1.2吨,可供生产口罩120-150万只,后续随着产线的增加和改进,产能还可以进一步提高.假设该公司每天生产n批次该材料,它们的某项质量指标为Q,质检员小张每天都会随机地从中抽取50批次检查其该项质量指标是否合格,若较多批次不合格,则需对其余所有批次进行检查.根据已有的生产数据,质量指标Q服从正态分布,且相互独立.若质量指标Q满足,则认为该批次是合格的,否则该批次不合格.(Ⅰ)假设某一天小张抽查出不合格批次数为,求及的数学期望;(Ⅱ)小张某天恰好从50个批次中检查出2批次不合格材料,若以此频率作为当天生产该材料的不合格率.已知检查1个批次的成本为10元,而每批次不合格材料流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有批次,试说明理由.附:若随机变量服从正态分布,则.参考数据:, 20.(本小题满分12分)已知抛物线的焦点为,为上位于第一象限的任意一点,过点的直线交于另一点,交轴的正半轴于点. (Ⅰ)若点的横坐标为,且为等边三角形,求的方程;(Ⅱ)对于(Ⅰ)中求出的抛物线,若点,记点关于轴的对称点为,交轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围. 21.(本小题满分12分)已知函数.(Ⅰ)当时,求函数的极值;(Ⅱ)若存在与函数,的图像都相切的直线,求实数的取值范围. (二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.22.(本小题满分10分)[选修4—4:坐标系与参数方程]已知直线l的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是(为参数,且).(Ⅰ)求直线l被曲线C截得的弦长;(Ⅱ)过极点O作直线,与曲线C有异于极点的公共点M,求线段OM中点的轨迹的极坐标方程. 23.(本小题满分10分)[选修4—5:不等式选讲]已知,且.(Ⅰ)求的取值范围;(Ⅱ)求证:.
西安中学高2020届高三第三次模考数学(理)答案 一、选择题:题号12[来源:Z_xx_k.Com]3456789101112答案CCDACBDBDABC 二、填空题:13. 14. 15. 16.,[来源:学,科,网]三、解答题:17.解:(Ⅰ)因为且,所以,························································2分又因为,······················································3分所以是以2为首项,以2为公差的等差数列.····························4分[来源:学科网ZXXK]所以.························································6分(Ⅱ)由(Ⅰ)及题设得,,·········································7分所以数列的前项和········································9分········································11分.······································12分 18.解:(Ⅰ)证明:取线段的中点,连接,. 因为在中,,分别为,的中点,所以 ,.因为 ,分别为,的中点,所以 , , 所以 , ,所以四边形为平行四边形,·································4分所以 .因为 平面,平面,所以 平面.····················································6分(Ⅱ)分别以为轴建立空间直角坐标系,则面的法向量, ,, ,则,设面的法向量,则,解得,························································9分所以·························································11分所以二面角的余弦值.···········································12分 19.解:(Ⅰ) ,由于服从二项分布,故.··········································6分(Ⅱ)由题意可知不合格率为,若不检查,记损失为Y,则损失的期望为,·····8分若检查,成本为,···············································10分由于, 当充分大时,,所以,为了使损失尽量小,小张需要检查其余所有批次.·················12分20.解:(Ⅰ)由题知,,则,的中点坐标为,·················································2分 则,解得,故C的方程为.··················································4分 (Ⅱ)依题可设直线的方程为,, 则,由消去,得,因为,所以,,,···························································6分 设的坐标为,则,, 由题知,所以, 即,显然,所以,即证,所以··········································8分由题知为等腰直角三角形,所以, 即,也即, 所以,所以. 即,, , 又因为,所以,,···············································10分 令,,, 易知在上是减函数,所以.········································12分 21.解:(Ⅰ)函数的定义域为当时,,所以 所以当时,,当时,,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值.····························3分[来源:Zxxk.Com](Ⅱ)设函数上点与函数上点处切线相同,则 所以所以,代入得:·····························································6分设,则不妨设则当时,,当时,所以在区间上单调递减,在区间上单调递增,···························8分代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时, 又当时[来源:学§科§网]····························································10分因此当时,函数必有零点;即当时,必存在使得成立;[即存在使得函数上点与函数上点处切线相同.又由得:所以单调递减,因此所以实数的取值范围是.·········································12分 22.解:(Ⅰ)由题意可知,直线l的直角坐标系方程是,曲线C的普通方程是,·············································2分则圆心C到直线l的距离, 故所求的弦长是.···············································5分(Ⅱ)线段OM的中点的轨迹的参数方程为(为参数,且),其普通方程为,·················································7分极坐标方程为,化简得.·········································10分 23.解:(Ⅰ)依题意,,故.··········································1分所以,························································3分所以,即的取值范围为.··········································5分(Ⅱ)因为,所以··························································7分,·······································8分当且仅当时等号成立.························9分又因为,所以.·······················································10分