江苏省苏州市某中学2020届高三数学第三次模拟考试试题
展开
江苏省苏州市某中学2020届高三数学第三次模拟考试试题一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.1.已知集合,则 .2.已知复数,其中为虚数单位,则复数的模是 .3.抛物线的准线方程为 .4.某市为了响应江苏省“农村人居环境整治的新实践”,调研农村环境整治情况,按地域将下辖的250个行政村分成四组,对应的行政村个数分别为,若用分层抽样抽取50个行政村,则B组中应该抽取的行政村数为 .5.执行如图所示的程序框图,输出的S的值为 .6.中国古典乐器一般按“八音”分类,如图,在《周礼·春官·大师》中按乐器的制造材料对乐器分类,分别为“金、石、木、土、革、丝、匏、竹” 八音,其中“土、匏、竹”为吹奏乐器,“金、石、木、革”为打击乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“一音”,则不是吹奏乐器的概率为 .7.已知函数若,则实数的值是 . 8.已知和均为等差数列,若,,则的值是 .9.已知为函数的两个极值点,则的最小值为 .10.在长方体中,,若在长方体中挖去一个体积最大的圆柱,则此圆柱与原长方体的体积比为 . 11.在平面直角坐标系中,已知圆,若对于直线上的任意一点P,在圆C上总存在Q使,则实数的取值范围为 .12.如图,在平行四边形ABCD中,,E为BC的中点,若线段DE上存在一点M满足,则的值是 .13.在中,设角对应的边分别为,记的面积为S,若,则的最大值为 .14.已知函数,其图象记为曲线,曲线上存在异于原点的点,使得曲线与其在的切线交于另一点,曲线与其在的切线交于另一点,若直线与直线的斜率之积小于,则的取值范围为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知平面向量,.(1)若,求的值;(2)若,求的值. 16.(本小题满分14分)如图,在三棱锥中,平面.已知,分别为的中点.(1)求证:平面;(2)若点在线段AC上,且,求证:∥平面.17.(本小题满分14分)在平面直角坐标系中,已知椭圆的左右焦点分别为 和,离心率为,左准线方程为.(1)求椭圆的方程;(2)设不经过的直线与椭圆相交于两点,直线的斜率分别为,且,求k的取值范围. 18.(本小题满分16分)如图,在一个圆心角为,半径为10米的扇形草地上,需铺设一个直角三角形的花地,其中为直角,要求三点分别落在线段和弧上,且,的面积为.(1)当且时,求的值;(2)无论如何铺设,要求始终不小于20平方米,求的取值范围.
19.(本小题满分16分)已知在每一项均不为0的数列中,,且(为常数,),记数列的前项和为.(1)当时,求;(2)当时,①求证:数列为等比数列;②是否存在正整数,使得不等式对任意恒成立?若存在,求出的最小值;若不存在,请说明理由. 20.(本小题满分16分)定义:函数的导函数为,函数的导函数为,我们称函数称为函数的二阶导函数.已知,.(1)求函数的二阶导函数;(2)已知定义在R上的函数满足:对任意,恒成立.P为曲线上的任意一点.求证:除点P外,曲线上每一点都在点P处切线的上方;(3)试给出一个实数a的值,使得曲线与曲线有且仅有一条公切线,并证明你的结论. 21.【选做题】本题包括、、三小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤..选修4 2:矩阵与变换(本小题满分10分)求曲线在矩阵对应变换作用下得到的曲线的方程. .选修4 4:坐标系与参数方程(本小题满分10分)在极坐标系中,已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线的方程为,曲线的方程为.(1)将和的方程化为直角坐标方程;(2)若和分别为和上的动点,求的最小值. .选修4 5:不等式选讲(本小题满分10分)已知均为正实数,且有,求证:. 【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在平面直角坐标系xOy中,已知抛物线在点处切线的斜率为,抛物线的准线与对称轴交于T,直线PT与抛物线交于另一点Q.(1)求抛物线的方程;(2)设M为抛物线C上一点,且M在P与Q之间运动,求面积的最大值. 23.(本小题满分10分)集合,记集合的元素个数为.(1)求;(2)求证:能被3整除. 参考答案一、填空题:本大题共14小题,每小题5分,共计70分. 1. 2. 3. 4.15 5.346. 7.4 8.12 9. 10.11. 12. 13. 14.解答与提示: 1.根据交集定义可知,.2.由可知,.3..4.由题意,所以.5.执行第一次循环;执行第二次循环;执行第三次循环,终止循环.所以.6.由枚举法知从音中任取不同1音共有8种不同的取法,不含吹奏乐器的有5种,由古典概型得.7.时,因为,所以无解.从而要使,只能,解得.8.因为成等差数列,所以,所以,得.9.,所以,所以的最小值为.10.分别以三种面上最大圆为圆柱的底面的圆柱体积为,所以最大体积为,所以此圆柱与原长方体的体积比为.11.由题意过P总可以作圆C的切线,所以圆C与直线相离,所以,解得.12.因为,所以所以.13.法一:由角化边得,所以,,故.令,则,,所以.法二:不妨设,则,以为轴,中点为坐标原点建立平面直角坐标系,则.设,由可得,而(是顶点到底边的高),所以,所以.法三:在中,过点C作,垂足为H.由,得.设,则.(当且仅当时取“”).14.,设,则,即,联立得,同理,则,,又,所以由,得,令,则在上有解,由得.二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)解:(1)因为,,且,所以.·····················································3分所以,即.··················································5分(2)因为,,且,所以,即.··················································8分若,则,不满足上式,舍去.····································10分所以,所以,················································12分所以.···················································14分16.(本小题满分14分)解:(1)因为平面,平面,所以.··································2分因为,是的中点,所以.·······································4分又因为,平面,所以平面.·····································6分 (2)连结,交于点,连结.如图.因为分别是的中点,所以为的中位线,···························8分从而,可得,······························10分因为,所以,所以.·························12分又因为平面,平面,所以∥平面.··································14分17.(本小题满分14分)解:(1)由可知,又左准线方程为,即,联立解得,,椭圆方程为.·····································4分(2)①由(1)可知,.设直线,联立消得,················································6分由韦达定理可知, 因为点和点不重合,且直线的斜率存在,所以,得.················································8分因为,,由条件,可得,即,化简得.·················································10分若,则直线过点,不符合条件,因此,故,得,············································12分代入可知,得,所以.···················································14分18.(本小题满分16分)解:(1)以为原点,所在直线分别为轴建立平面直角坐标系.因为且,所以点在直线上.又因为点在圆上,所以.········································3分 此时,所以当且时,S的值为20平方米.··································6分(2)法一:过作,垂足为,作,垂足为,所以,并且相似比为,所以,·····································8分又因为点在圆上,代入计算得.··································10分设,则,所以,·····················································12分当R与M重合时,,此时取得最小值,所以,·····················································14分要使S始终不小于20平方米,则,解得,所以的取值范围为.答:要使S始终不小于20平方米,的取值范围为.······················16分法二:过作,垂足为,作,垂足为,所以,并且相似比为,所以,·····································8分又因为点在圆上,代入计算得.··································10分设由逆时针转过的角的大小为,当与重合时设,当与重合时设,则,此时,所以, ···········································12分所以,···················································14分所以,解得,所以的取值范围是. 答:要使S始终不小于20平方米,的取值范围为.······················16分法三:以为原点,所在直线分别为轴建立平面直角坐标系.设Q点坐标为,①当QP斜率不存在时,,,,又因为点在圆 上,代入计算得.·············8分②当QP斜率存在时,设斜率为k,则直线PQ的方程为,令, ,所以P点坐标为.直线QR的方程为,令,,所以R点坐标为.因为,所以,所以,整理得,所以,又因为都为正数,所以,···················································10分点在圆上,代入计算得 ,又,所以,·····················································12分,所以,所以.由①②得,·················································14分所以,解得,所以的取值范围是. 答:要使S始终不小于20平方米,的取值范围为.······················16分法四:设,,其中,,点到AC边的距离为,到BC边的距离为.则,·······················································8分,所以.···················································10分以下同法三.19.(本小题满分16分)解:(1)当时,,因为,所以,所以数列是以3为首项、为公比的等比数列.··························2分当时,;当时,.综上所述,················································4分(2)①当时,,所以,.若存在,使得,则,与矛盾.所以,所以,················································5分所以.·····················································7分又因为,所以,所以数列是以为首项、2为公比的等比数列.··························8分②由①可知,所以,所以.·····················································10分由,得,,所以当时,,················································13分所以(当且仅当时取“”),所以,·······························15分又因为,且,所以的最小值为2.··································16分20.(本小题满分16分)解:(1),.···················································3分(2)设,则曲线在点P处的切线方程为.设,则,.所以在上递增.又,所以当时,;当时,.所以在递减,在递增.所以,.所以.所以除点P外,曲线上每一点都在点P处切线的上方.····················8分(3)给出,此时.因为,所以.又,所以曲线在x=0处的切线为.因为,所以.又,所以曲线在x=0处的切线为.从而两曲线有一条公切线.······································10分下面证明它们只有这一条公切线.①先证明,,当且仅当时取“”.设,则,所以,当且仅当时取“”.所以在上递增.又,所以当时,;当时,.所以在递减,在递增.所以,,当且仅当时取“”.所以,,当且仅当时取“”.····································13分②再证明它们没有其它公切线.若它们还有一条公切线,它与曲线切于点,与曲线切于点,显然,,.因为,由(2)知,,当且仅当时取“”.因为,所以.又由①知,矛盾.故它们只有这一条公切线.综上,当时,曲线与曲线有且仅有一条公切线.·······················16分
数学Ⅱ(附加题)参考答案21.【选做题】本题包括、、三小题,请选定其中两题,若多做,则按作答的前两题评分. .选修4 2:矩阵与变换(本小题满分10分)解:设曲线上任一点对应曲线上的点,则,得所以················································4分带入的方程,得,即.所以曲线的方程为.·········································10分.选修4 4:坐标系与参数方程(本小题满分10分)解:(1)设为上任一点,则有,,··································2分所以由得,即,·············································4分,消得.··················································6分(2)圆心到直线的距离,所以的最小值为.···········································10分.选修4 5:不等式选讲(本小题满分10分)证:因为,,,················································2分所以,····················································4分,当且仅当时取等号,所以.····································10分【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)解:(1)由得,,所以当时,,得,所以抛物线的方程为.········································3分(2)由抛物线的准线可知,直线的方程为,·············································5分代入得,设,由条件可知,当面积取最大值时,抛物线在M处的切线平行于直线PT,则,,所以,M到直线PT的距离为,又,所以.················································10分23.(本小题满分10分)解:(1),得;,得; ,得;,得.所以.····················································3分(2)由题意, 集合中的各位数字之和为,对于中的每个数,各位数字之和为,若的首位为1,则其余各位数字之和为,总个数为;若的首位为2,则其余各位数字之和为,总个数为,所以. 6分下面用数学归纳法证明能被3整除.1.当时,能被3整除;2.假设时,能被3整除;则当时,,因为能被3整除,所以也能被3整除,所以当时,结论成立综上可知,能被3整除.·······································10分