搜索
    上传资料 赚现金
    英语朗读宝

    江苏省苏州市某中学2020届高三数学第三次模拟考试试题

    江苏省苏州市某中学2020届高三数学第三次模拟考试试题第1页
    江苏省苏州市某中学2020届高三数学第三次模拟考试试题第2页
    江苏省苏州市某中学2020届高三数学第三次模拟考试试题第3页
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州市某中学2020届高三数学第三次模拟考试试题

    展开

    江苏省苏州市某中学2020届高三数学第三次模拟考试试题一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上1.已知集合,则    2.已知复数,其中为虚数单位,则复数的模是    3.抛物线的准线方程为    4.某市为了响应江苏省农村人居环境整治的新实践,调研农村环境整治情况,按地域将下辖的250个行政村分成四组,对应的行政村个数分别为,若用分层抽样抽取50个行政村,则B组中应该抽取的行政村数为    5.执行如图所示的程序框图,输出的S的值为    6.中国古典乐器一般按八音分类,如图,在《周礼·春官·大师》中按乐器的制造材料对乐器分类,分别为金、石、木、土、革、丝、匏、竹 八音,其中土、匏、竹为吹奏乐器,金、石、木、革为打击乐器,为弹拨乐器.现从八音中任取不同的,则不吹奏乐器的概率为    7.已知函数,则实数的值是    8.已知均为等差数列,若,则的值是    9.已知为函数的两个极值点,则的最小值为    10.在长方体中,,若在长方体中挖去一个体积最大的圆柱,则此圆柱与原长方体的体积比为     11.在平面直角坐标系中,已知圆,若对于直线上的任意一点P,在圆C上总存在Q使,则实数的取值范围为    12.如图,在平行四边形ABCD中,EBC的中点,若线段DE上存在一点M满足,则的值是    13.中,设角对应的边分别为,记的面积为S,若,则的最大值为    14.已知函数,其图象记为曲线,曲线上存在异于原点的点,使得曲线与其在的切线交于另一点,曲线与其在的切线交于另一点,若直线与直线的斜率之积小于,则的取值范围为    二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知平面向量(1),求的值;(2),求的值.     16.(本小题满分14分)如图,在三棱锥中,平面.已知分别为的中点.(1)求证:平面(2)若点在线段AC上,且求证:平面17.(本小题满分14分)在平面直角坐标系中,已知椭圆的左右焦点分别为 ,离心率为左准线方程为(1)求椭圆的方程;(2)设不经过的直线与椭圆相交于两点,直线的斜率分别为,且k的取值范围  18.(本小题满分16分)如图,在一个圆心角为,半径为10米的扇形草地上,需铺设一个直角三角形的花地,其中为直角,要求三点分别落在线段和弧上,且的面积为(1)当时,求的值;(2)无论如何铺设,要求始终不小于20平方米,求的取值范围.
    19.(本小题满分16分)已知在每一项均不为0的数列中,,且为常数,),记数列的前项和为(1)当时,求(2)当时,求证:数列为等比数列;是否存在正整数,使得不等式对任意恒成立?若存在,求出的最小值;若不存在,请说明理由.   20.(本小题满分16分)定义:函数的导函数为,函数的导函数为,我们函数称为函数的二阶导函数.已知(1)求函数的二阶导函数;(2)已知定义在R上的函数满足:对任意恒成立.P为曲线上的任意一点.求证:除点P外,曲线上每一点都在点P处切线的上方(3)试给出一个实数a的值,使得曲线与曲线有且仅有一条公切线,并证明你的结论.  21.【选做题】本题包括三小题,请选定其中两题并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.选修4  2:矩阵与变换(本小题满分10分)求曲线在矩阵对应变换作用下得到的曲线的方程.    选修4  4:坐标系与参数方程(本小题满分10分)在极坐标系中已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线的方程为,曲线的方程为(1)将的方程化为直角坐标方程;(2)若分别为上的动点,求的最小值.    选修4  5:不等式选讲(本小题满分10分)已知均为正实数,且有,求证:   【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在平面直角坐标系xOy中,已知抛物线在点处切线的斜率为,抛物线的准线与对称轴交于T直线PT与抛物线交于另一点Q(1)求抛物线的方程;(2)M为抛物线C上一点,且MPQ之间运动,求面积的最大值.  23.(本小题满分10分)集合记集合元素个数为(1)(2)求证:能被3整除. 参考答案一、填空题:本大题共14小题,每小题5分,共计70分. 1. 2. 3. 4.15 5346 7.4 812 9 1011. 12. 13. 14.解答与提示: 1.根据交集定义可知,2.由可知,3.4.由题意,所以5.执行第一次循环;执行第二次循环;执行第三次循环,终止循环.所以6.由枚举法知从音中任取不同1音共有8种不同的取法,不含吹奏乐器的有5种,由古典概型得7.时,因为,所以无解从而要使,只能,解得8.因为成等差数列,所以所以,得9.,所以,所以的最小值为10.分别以三种面上最大圆为圆柱的底面的圆柱体积为,所以最大体积为,所以此圆柱与原长方体的体积比为11.由题意过P总可以作圆C的切线,所以C与直线相离,所以,解得12.因为所以所以13.法一角化边得,所以,则所以法二:不妨设,则轴,中点为坐标原点建立平面直角坐标系,则,由可得是顶点到底边的高),所以,所以法三:在中,过点C,垂足为H,得.设,则.(当且仅当时取).14.,设,即联立,同理所以由,则上有解,由二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)解:(1)因为,且所以·····················································3所以,即··················································5(2)因为所以,即··················································8,则,不满足上式,舍去.····································10所以,所以················································12所以···················································14分16.(本小题满分14分)(1)因为平面平面所以··································2分因为的中点,所以·······································4分又因为平面所以平面·····································6分   (2)连结,交于点,连结.如图.因为分别是的中点,所以的中位线,···························8分从而,可得······························10分因为,所以所以·························12分又因为平面平面,所以平面··································14分17.(本小题满分14分)解:(1)可知左准线方程为联立解得椭圆方程为·····································4分(2)(1)可知,设直线联立················································6分由韦达定理可知因为点和点不重合,且直线的斜率存在,所以················································8分因为由条件可得,即化简得·················································10分则直线过点不符合条件,因此············································12分代入可知所以···················································14分18.(本小题满分16分)解:(1)以为原点,所在直线分别为轴建立平面直角坐标系因为,所以在直线又因为点在圆上,所以········································3 此时所以当时,S的值为20平方米.··································62法一:,垂足为,作,垂足为所以,并且相似比为,所以·····································8又因为点在圆上,代入计算得··································10,则所以·····················································12RM重合时,,此时取得最小值,所以·····················································14要使S始终不小于20平方米,,解得,所以的取值范围为答:要使S始终不小于20平方米,的取值范围为······················16法二:,垂足为,作,垂足为所以,并且相似比为,所以·····································8又因为点在圆上,代入计算得··································10逆时针转过的角的大小为重合时设,当重合时设,此时,所以 ···········································12所以···················································14分所以解得所以的取值范围是答:要使S始终不小于20平方米,的取值范围为······················16:以为原点,所在直线分别为轴建立平面直角坐标系Q点坐标为QP斜率不存在时,又因为点在圆 上,代入计算得·············8QP斜率存在时,设斜率为k,则直线PQ的方程为 ,所以P点坐标为直线QR的方程为,所以R点坐标为因为,所以所以整理得,所以,又因为都为正数,所以···················································10分在圆上,代入计算得 所以·····················································12,所以,所以·················································14所以解得,所以的取值范围是答:要使S始终不小于20平方米,的取值范围为······················16,其中,点AC边的距离为,到BC边的距离为.·······················································8所以···················································10分以下同法三19.(本小题满分16分)解:(1)当时,因为所以所以数列是以3为首项、为公比的等比数列.··························2时,时,综上所述················································4分(2)时,所以若存在,使得,则,与矛盾.所以所以················································5所以·····················································7因为所以所以数列是以为首项、2为公比的等比数列.··························8可知,所以所以·····················································10,得所以时,················································13所以(当且仅当时取),所以·······························15因为,且所以的最小值为2··································1620.(本小题满分16分)解:(1)···················································3(2),则曲线在点P处的切线方程为,则所以上递增.又所以时,;当时,所以递减,在递增.所以所以所以除点P外,曲线上每一点都在点P处切线的上方.····················8(3)给出,此时因为所以所以曲线x=0处的切线为因为所以所以曲线x=0处的切线为从而两曲线有一条公切线······································10下面证明它们只有这一条公切线.先证明,当且仅当时取,则所以,当且仅当时取所以上递增.又所以时,;当时,所以递减,在递增.所以,当且仅当时取所以,当且仅当时取····································13再证明它们没有其它公切线.若它们还有一条公切线,它与曲线切于点,与曲线切于点,显然因为,由(2),当且仅当时取因为所以又由,矛盾.故它们只有这一条公切线.综上,当时,曲线与曲线有且仅有一条公切线.·······················16
    数学(附加题)参考答案21.【选做题】本题包括三小题,请选定其中两题,若多做,则按作答的前两题评分. 选修4  2:矩阵与变换(本小题满分10分)解:设曲线上任一点对应曲线上的点,得所以················································4分带入的方程,得,即所以曲线的方程为·········································10分选修4  4:坐标系与参数方程(本小题满分10分)解:(1)上任一点,则有··································2分所以由,即·············································4分,消··················································6分(2)圆心到直线的距离所以的最小值为···········································10分选修4  5:不等式选讲(本小题满分10分)证:因为················································2分所以····················································4分当且仅当时取等号所以····································10分【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)解:(1)所以当时,,得所以抛物线的方程为········································3分(2)由抛物线的准线可知直线的方程为·············································5分代入,设,由条件可知面积取最大值时,抛物线在M处的切线平行于直线PT,所以M到直线PT的距离为,所以················································10分23.(本小题满分10分)解:(1),得,得    ,得,得所以····················································3分(2)由题意, 集合的各位数字之和为,对于中的每个数,各位数字之和为,若的首位为1,则其余各位数字之和为,总个数为;若的首位为2,则其余各位数字之和为,总个数为,所以              6分下面用数学归纳法证明能被3整除.1.当时,能被3整除;2.假设时,能被3整除;则当时,因为能被3整除,所以也能被3整除,所以当时,结论成立综上可知,能被3整除.·······································10分  

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map