


2020届北京市平谷区高三3月质量监控(一模)数学试题(解析版)
展开2020届北京市平谷区高三3月质量监控(一模)数学试题
一、单选题
1.已知集合,集合,那么等于( )
A. B. C. D.
【答案】A
【解析】求出集合,然后进行并集的运算即可.
【详解】
∵,,
∴.
故选:A.
【点睛】
本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.
2.下列函数中,既是偶函数又在区间上单调递增的是( )
A. B. C. D.
【答案】C
【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.
【详解】
A:为非奇非偶函数,不符合题意;
B:在上不单调,不符合题意;
C:为偶函数,且在上单调递增,符合题意;
D:为非奇非偶函数,不符合题意.
故选:C.
【点睛】
本小题主要考查函数的单调性和奇偶性,属于基础题.
3.如果,那么下列不等式成立的是( )
A. B.
C. D.
【答案】D
【解析】利用函数的单调性、不等式的基本性质即可得出.
【详解】
∵,∴,,,.
故选:D.
【点睛】
本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.
4.双曲线的一条渐近线方程为,那么它的离心率为( )
A. B. C. D.
【答案】D
【解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.
【详解】
∵双曲线的一条渐近线方程为,
可得,∴,
∴双曲线的离心率.
故选:D.
【点睛】
本小题主要考查双曲线离心率的求法,属于基础题.
5.设直线过点,且与圆:相切于点,那么( )
A. B.3 C. D.1
【答案】B
【解析】过点的直线与圆:相切于点,可得.因此,即可得出.
【详解】
由圆:配方为,
,半径.
∵过点的直线与圆:相切于点,
∴;
∴;
故选:B.
【点睛】
本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.
6.将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为( )
A. B. C. D.
【答案】B
【解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可.
【详解】
将函数图象上所有点向左平移个单位长度后得到函数的图象,
则,
设,
则当时,,,
即,
要使在区间上单调递减,
则得,得,
即实数的最大值为,
故选:B.
【点睛】
本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.
7.设点,,不共线,则“”是“”( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
【答案】C
【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.
【详解】
由于点,,不共线,则“”;
故“”是“”的充分必要条件.
故选:C.
【点睛】
本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.
8.有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是( )
A.8 B.7 C.6 D.4
【答案】A
【解析】则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.
【详解】
最底层正方体的棱长为8,
则从下往上第二层正方体的棱长为:,
从下往上第三层正方体的棱长为:,
从下往上第四层正方体的棱长为:,
从下往上第五层正方体的棱长为:,
从下往上第六层正方体的棱长为:,
从下往上第七层正方体的棱长为:,
从下往上第八层正方体的棱长为:,
∴改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.
故选:A.
【点睛】
本小题主要考查正方体有关计算,属于基础题.
9.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为( )
A.1 B.2 C.3 D.0
【答案】C
【解析】由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.
【详解】
由三视图还原原几何体如图,
其中,,为直角三角形.
∴该三棱锥的表面中直角三角形的个数为3.
故选:C.
【点睛】
本小题主要考查由三视图还原为原图,属于基础题.
10.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么( )
A. B. C. D.
【答案】D
【解析】由得,分别算出和的值,从而得到的值.
【详解】
∵,
∴,
∴,
当时,,∴,
当时,,∴,
∴,
故选:D.
【点睛】
本小题主要考查对数运算,属于基础题.
二、填空题
11.如果复数满足,那么______(为虚数单位).
【答案】
【解析】把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.
【详解】
∵,
∴,
∴,
故答案为:.
【点睛】
本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.
12.已知,那么______.
【答案】
【解析】由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.
【详解】
∵,
∴,,
∴.
故答案为:.
【点睛】
本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.
13.设常数,如果的二项展开式中项的系数为-80,那么______.
【答案】
【解析】利用二项式定理的通项公式即可得出.
【详解】
的二项展开式的通项公式:,
令,解得.
∴,
解得.
故答案为:-2.
【点睛】
本小题主要考查根据二项式展开式的系数求参数,属于基础题.
14.如果抛物线上一点到准线的距离是6,那么______.
【答案】
【解析】先求出抛物线的准线方程,然后根据点到准线的距离为6,列出,直接求出结果.
【详解】
抛物线的准线方程为,
由题意得,解得.
∵点在抛物线上,
∴,∴,
故答案为:.
【点睛】
本小题主要考查抛物线的定义,属于基础题.
15.某公园划船收费标准如表:
某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.
【答案】360 10
【解析】列出所有租船的情况,分别计算出租金,由此能求出结果.
【详解】
当租两人船时,租金为:元,
当租四人船时,租金为:元,
当租1条四人船6条两人船时,租金为:元,
当租2条四人船4条两人船时,租金为:元,
当租3条四人船2条两人船时,租金为:元,
当租1条六人船5条2人船时,租金为:元,
当租2条六人船2条2人船时,租金为:元,
当租1条六人船1条四人船3条2人船时,租金为:元,
当租1条六人船2条四人船1条2人船时,租金为:元,
当租2条六人船1条四人船时,租金为:元,
综上,租船最低总费用为360元,租船的总费用共有10种可能.
故答案为:360,10.
【点睛】
本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.
三、解答题
16.在中,,, .求边上的高.
①,②,③,这三个条件中任选一个,补充在上面问题中并作答.
【答案】详见解析
【解析】选择①,利用正弦定理求得,利用余弦定理求得,再计算边上的高.
选择②,利用正弦定理得出,由余弦定理求出,再求边上的高.
选择③,利用余弦定理列方程求出,再计算边上的高.
【详解】
选择①,在中,由正弦定理得,
即,解得;
由余弦定理得,
即,
化简得,解得或(舍去);
所以边上的高为.
选择②,在中,由正弦定理得,
又因为,所以,即;
由余弦定理得,
即,
化简得,解得或(舍去);
所以边上的高为.
选择③,在中,由,得;
由余弦定理得,
即,
化简得,解得或(舍去);
所以边上的高为.
【点睛】
本小题主要考查真闲的了、余弦定理解三角形,属于中档题.
17.为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.
(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:
(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;
(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)
【答案】(1)(2)详见解析(3)初中生平均参加公益劳动时间较长
【解析】(1)由图表直接利用随机事件的概率公式求解;
(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;
(3)由图表直接判断结果.
【详解】
(1)100名学生中共有男生48名,
其中共有20人参加公益劳动时间在,
设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,
那么;
(2)的所有可能取值为0,1,2,3.
∴;;
;.
∴随机变量的分布列为:
(3)由图表可知,初中生平均参加公益劳动时间较长.
【点睛】
本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.
18.如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,,,为的中点.
(1)求证:平面;
(2)求二面角的大小.
【答案】(1)证明见解析(2)
【解析】(1)连接,交与,连接,由,得出结论;
(2)以为原点,,,分别为,,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.
【详解】
(1)连接,交与,连接,
在中,,
又平面,平面,
所以平面;
(2)由平面平面,,为平面与平面的交线,故平面,故,又,所以平面,
以为原点,,,分别为,,轴建立空间直角坐标系,
,,,,,,
设平面的法向量为,,,
由,得,
平面的法向量为,
由,
故二面角的大小为.
【点睛】
本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.
19.已知函数,其中.
(1)当时,求在的切线方程;
(2)求证:的极大值恒大于0.
【答案】(1)(2)证明见解析
【解析】(1)求导,代入,求出在处的导数值及函数值,由此即可求得切线方程;
(2)分类讨论得出极大值即可判断.
【详解】
(1),
当时,,,
则在的切线方程为;
(2)证明:令,解得或,
①当时,恒成立,此时函数在上单调递减,
∴函数无极值;
②当时,令,解得,令,解得或,
∴函数在上单调递增,在,上单调递减,
∴;
③当时,令,解得,令,解得或,
∴函数在上单调递增,在,上单调递减,
∴,
综上,函数的极大值恒大于0.
【点睛】
本小题主要考查利用导数求切线方程,考查利用导数研究函数的极值,考查分类讨论的数学思想方法,属于中档题.
20.已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.
(1)求椭圆的标准方程;
(2)求证:为定值.
【答案】(1)(2)证明见解析
【解析】(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;
(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.
【详解】
(1)因为,由椭圆的定义得,,
点在椭圆上,代入椭圆方程,解得,
所以的方程为;
(2)证明:设,,直线的斜率为,设直线的方程为,
联立方程组,消去,整理得,
所以,,
直线的直线方程为,令,则,
同理,
所以:
,
代入整理得,
所以为定值.
【点睛】
本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.
21.记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.
(1)若,求的前项和;
(2)证明:的“极差数列”仍是;
(3)求证:若数列是等差数列,则数列也是等差数列.
【答案】(1)(2)证明见解析(3)证明见解析
【解析】(1)由是递增数列,得,由此能求出的前项和.
(2)推导出,,由此能证明的“极差数列”仍是.
(3)证当数列是等差数列时,设其公差为,,是一个单调递增数列,从而,,由,,,分类讨论,能证明若数列是等差数列,则数列也是等差数列.
【详解】
(1)解:∵无穷数列的前项中最大值为,最小值为,,,
是递增数列,∴,
∴的前项和.
(2)证明:∵,
,
∴,
∴,
∵,
∴,
∴的“极差数列”仍是
(3)证明:当数列是等差数列时,设其公差为,
,
根据,的定义,得:
,,且两个不等式中至少有一个取等号,
当时,必有,∴,
∴是一个单调递增数列,∴,,
∴,
∴,∴是等差数列,
当时,则必有,∴,
∴是一个单调递减数列,∴,,
∴,
∴.∴是等差数列,
当时,,
∵,中必有一个为0,
根据上式,一个为0,为一个必为0,
∴,,
∴数列是常数数列,则数列是等差数列.
综上,若数列是等差数列,则数列也是等差数列.
【点睛】
本小题主要考查新定义数列的理解和运用,考查等差数列的证明,考查数列的单调性,考查化归与转化的数学思想方法,属于难题.