搜索
    上传资料 赚现金
    英语朗读宝

    华师大版(2024)数学七年级下册 9.1.3 作轴对称图形 (课件)

    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第1页
    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第2页
    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第3页
    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第4页
    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第5页
    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第6页
    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第7页
    华师大版(2024)数学七年级下册 9.1.3  作轴对称图形 (课件)第8页
    还剩22页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    华东师大版(2024)七年级下册(2024)第9章 轴对称、平移与旋转9.1 轴对称3.作轴对称图形课文内容课件ppt

    展开

    这是一份华东师大版(2024)七年级下册(2024)第9章 轴对称、平移与旋转9.1 轴对称3.作轴对称图形课文内容课件ppt,共30页。PPT课件主要包含了线段垂直平分线的定义,②连结对称点,作轴对称图形的方法,作图原理,作轴对称图形,作图方法等内容,欢迎下载使用。
    经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
    如果一个图形是轴对称图形,那么连结对称点的线段的垂直平分线就是该图形的对称轴.
    轴对称图形与垂直平分线的联系
    ①找出图形的任意一组对称点;
    轴对称图形的对称轴的画法:
    ③作出对称点所连线段的垂直平分线.
    我们前面学习了轴对称图形以及轴对称图形的一些相关性质.如果给出一个图形和一条直线,那么如何作出这个图形关于这条直线的对称图形呢?这节课我们一起来学习作轴对称图形的方法.
    如图,实线所构成的图形为已知图形,虚线为对称轴,试作出已知图形的轴对称图形.作好之后,你可以通过对折的方法来验证你作得是否正确.
    在格点图中,很容易找到格点关于对称轴的对称点,因此可以较方便地作出已知图形的轴对称图形.如果没有格点,应如何作出某个图形的轴对称图形呢?
    如图,已知点A和直线l,要作出点A关于直线l的对称点A',此时就需要过点A作直线l的垂线,与l相交于点O,然后在垂线上取一点A',使OA'=OA,如图所示.
    我们已经能利用尺规作图,作已知线段的垂直平分线,作已知角的平分线,那么如何利用尺规作图,过已知点作出已知直线的垂线,从而得到已知点关于已知直线的对称点呢?
    已知点与已知直线可以有两种不同的位置关系:点在直线上;点在直线外.现分别按这两种情况作图.(1)经过已知直线AB上一点C作已知直线AB的垂线.如图,由于点C在直线AB上,因此所要求作的垂线正好是平角∠ACB的平分线所在的直线.
    (2)经过已知直线AB外一点C作已知直线AB的垂线.如图,由于点C是垂线上的一个点,因此要作出垂线,只要再找到垂线上的另一点P.
    如果垂线CP已作出,那么沿着垂线CP对折,可以发现CP一侧的直线AB上的点M与另一侧的某一点N重合,即有CM=CN,PM=PN.此时可以发现所需求作的垂线CP正是线段MN的垂直平分线.
    于是我们想到,先以点C为圆心、适当长为半径作弧,与直线AB相交于M、N两点;再分别以点M和N为圆心、相同长为半径作弧,得到交点,即为垂线l上的另一点P.由此,你能发现利用尺规作图过一已知点作已知直线的垂线的方法吗?
    1.如图,经过已知直线AB上一点C,试利用尺规作图,按下列作法准确地作出直线AB的垂线.(1)作平角∠ACB的平分线CP;(2)反向延长射线CP.直线CP就是所要求作的垂线.
    2.如图,经过已知直线AB外一点C,试利用尺规作图,按下列作法准确地作出直线AB的垂线.(1)以点C为圆心、适当长(大于点C到直线AB的距离)为半径作弧,交直线AB于M、N两点;
    (2)分别以点M、N为圆心,相同长(大于线段MN长的一半)为半径作弧,两弧相交于点P;(3)作直线CP. 直线CP就是所要求作的垂线.
    例 如图,已知△ABC 和直线 l,作出△ABC关于直线 l 对称的图形.
    分析:△ABC 可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线 l 的对应点,连接这些对应点,就能得到要画的图形.
    作法:(1)分别作出点 A、B、C关于直线 l 的对称点 A1、B1和C1;(2) 连结 A1B1 、 B1C1 、 C1A1.如图,△A1B1C1 就是所要求作的△ABC关于直线l对称的三角形.
    从上例可以知道,如果图形是由直线、线段或射线组成的,那么只要作出图形中的特殊点(如线段的端点、角的顶点等)的对称点,然后连结对称点,就可以作出关于这条直线的对称图形.
    你可以试一试,作出其他复杂图形的轴对称图形.
    已知线段 AB,画出 AB 关于直线 l 的对称线段.
    由一个平面图形可以得到与它关于一条直线 l 对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.
    1.在图中分别作出点A关于两条直线的对称点A'和A" .
    2.作出如图所示图形关于直线l的对称图形.
    3.如图,已知△ABC,利用尺规作图作出△ABC的边BC上的高.
    1. 如图,把下列图形补成关于直线 l 对称的图形.
    2. 如图给出了一个图案的一半,虚线 l 是这个图案的对称轴.整个图案是个什么形状?请准确地画出它的另一半.
    3. 如图,画△ABC 关于直线 m 的对称图形.
    对应点所连的线段被对称轴垂直平分
    (1) 找特征点;(2) 作垂线;(3) 截取等长;(4) 依次连线

    相关课件

    初中华东师大版(2024)3.作轴对称图形集体备课课件ppt:

    这是一份初中华东师大版(2024)3.作轴对称图形集体备课课件ppt,共31页。PPT课件主要包含了1轴对称,线段垂直平分线的定义,②连结对称点,作轴对称图形的方法,作图原理,作轴对称图形,作图方法等内容,欢迎下载使用。

    华东师大版(2024)七年级下册(2024)3.作轴对称图形课文配套ppt课件:

    这是一份华东师大版(2024)七年级下册(2024)3.作轴对称图形课文配套ppt课件,文件包含913作轴对称图形pptx、画轴对称图形mp4、过直线上一点作已知直线的垂线mp4、过直线外一点作已知直线的垂线mp4等4份课件配套教学资源,其中PPT共17页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map