所属成套资源:新高考数学一轮复习考点分类讲与练 (2份,原卷版+解析版)
新高考数学一轮复习考点分类讲与练第59讲 直线的方程(2份,原卷版+解析版)
展开
这是一份新高考数学一轮复习考点分类讲与练第59讲 直线的方程(2份,原卷版+解析版),文件包含新高考数学一轮复习考点分类讲与练第59讲直线的方程原卷版doc、新高考数学一轮复习考点分类讲与练第59讲直线的方程解析版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
1. 当直线l与x轴相交时,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线l的倾斜角,并规定:直线l与x轴平行或重合时倾斜角为0°,因此倾斜角α的范围是0°≤α<180°.
2. 当倾斜角α≠90°时,tanα表示直线l的斜率,常用k表示,即k=tanα.当α=90°时,斜率不存在.当直线过P1(x1,y1),P2(x2,y2)且x1≠x2时,k=eq \f(y2-y1,x2-x1).
3. 直线方程的几种形式
1、若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为( )
A. 1 B. 4
C. 1或3 D. 1或4
【答案】 A
【解析】 由题意,得 eq \f(4-m,m-(-2))=1,解得m=1.
2、倾斜角为135°,在y轴上的截距为-1的直线方程是( )
A.x-y+1=0 B.x-y-1=0
C.x+y-1=0 D.x+y+1=0
【答案】 D
【解析】直线的斜率为k=tan 135°=-1,所以直线方程为y=-x-1,即x+y+1=0.
3、过点P(2,3)且在两坐标轴上截距相等的直线方程为________________.
【答案】 3x-2y=0或x+y-5=0
【解析】当截距为0时,直线方程为3x-2y=0;
当截距不为0时,
设直线方程为eq \f(x,a)+eq \f(y,a)=1,
则eq \f(2,a)+eq \f(3,a)=1,解得a=5.
所以直线方程为x+y-5=0.
4、(多选)若直线过点A(1,2),且在两坐标轴上截距的绝对值相等,则直线l方程可能为( )
A.x-y+1=0 B.x+y-3=0
C.2x-y=0 D.x-y-1=0
【答案】ABC
【解析】当直线经过原点时,斜率为k=eq \f(2-0,1-0)=2,所求的直线方程为y=2x,即2x-y=0;当直线不过原点时,设所求的直线方程为x±y=k,把点A(1,2)代入可得1-2=k或1+2=k,求得k=-1或k=3,故所求的直线方程为x-y+1=0或x+y-3=0;综上知,所求的直线方程为2x-y=0,x-y+1=0或x+y-3=0.故选A、B、C.
5、 直线x+(a2+1)y+1=0的倾斜角的取值范围是( )
A. eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,4))) B. eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3π,4),π))
C. eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,4)))∪ eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)) D. eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(π,4),\f(π,2)))∪ eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3π,4),π))
【答案】 B
【解析】 由直线方程,得该直线的斜率为k=- eq \f(1,a2+1).又-1≤- eq \f(1,a2+1)