终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析)

    立即下载
    加入资料篮
    模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析)第1页
    模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析)第2页
    模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析)

    展开

    这是一份模块四 题型全通关专题3 解答型题型第7讲 应用题 -最新中考数学二轮专题复习训练(含解析),共34页。
    第7讲 应用题
    应用意识是初中阶段数学的核心素养之一,应用意识主要是指有意识地利用数学的概念、原理和方法解释现实世界中的规律,解决现实世界中的问题.能够感悟现实生活中蕴含着大量的与数量和图形有关的问题,可以用数学的主法予以解决.应用意识有助于用学过的知识和方法解决简单的实际问题,养成理论联系实际的习惯,发展实践能力.
    考点讲解:利用正负数的意义,实数的运算解决基本的应用题.
    【例1】
    (2020·浙江·模拟预测)
    1.小明家买了一辆轿车,他记录了某一个星期他家轿车每天行驶的路程,以为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下:(单位:)
    (1)求小明家这个星期轿车行驶的路程;
    (2)请你运用所学的知识估计小明家一个月(按30天计算)轿车行驶的路程;
    (3)若已知该轿车每行驶耗油8升,且汽油价格为每升5.90元,根据(2)题估计小明家一年(按12个月算)的汽油费用(精确到个位)
    【变1】
    (2023·四川攀枝花·统考中考真题)
    2.2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行决赛,决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.
    (1)本届世界杯分在组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个组分组积分赛对阵表(不要求写对阵时间).
    (2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?
    (3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?
    考点讲解:方程应用题,就是通过列方程和不等式来解决问题的应用题.这类试题,可以用列表法或画线段图地方法整理数据,从中找出等量关系或不等关系.
    【例1】
    (2023·山东淄博·统考中考真题)
    3.某古镇为发展旅游产业,吸引更多的游客前往游览,助力乡村振兴,决定在“五一”期间对团队*旅游实行门票特价优惠活动,价格如下表:
    *题中的团队人数均不少于10人
    现有甲、乙两个团队共102人,计划利用“五一”假期到该古镇旅游,其中甲团队不足50人,乙团队多于50人.
    (1)如果两个团队分别购票,一共应付5580元,问甲、乙团队各有多少人?
    (2)如果两个团队联合起来作为一个“大团队”购票,比两个团队各自购票节省的费用不少于1200元,问甲团队最少多少人?
    【变1】
    (2023·湖北宜昌·统考中考真题)
    4.为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.
    (1)求豆沙粽和肉粽的单价;
    (2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);
    ①根据上表,求豆沙粽和肉粽优惠后的单价;
    ②为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为包,包,A,B两种包装的销售总额为17280元.求m的值.
    考点讲解:几何应用题,就是用几何的方法解决的实际问题.解决这类问题,需要画出图形,从中找出几何关系.
    【例1】
    (2023·四川凉山·统考中考真题)
    5.超速容易造成交通事故.高速公路管理部门在某隧道内的两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且在同一直线上.点、点到的距离分别为,且,在处测得点的俯角为,在处测得点的俯角为,小型汽车从点行驶到点所用时间为.

    (1)求两点之间的距离(结果精确到);
    (2)若该隧道限速80千米/小时,判断小型汽车从点行驶到点是否超速?并通过计算说明理由.(参考数据:)
    【变1】
    (2023·陕西·统考中考真题)
    6.一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高.如图所示,当小明爸爸站在点处时,他在该景观灯照射下的影子长为,测得;当小明站在爸爸影子的顶端处时,测得点的仰角为.已知爸爸的身高,小明眼睛到地面的距离,点、、在同一条直线上,,,.求该景观灯的高.(参考数据:,,

    考点讲解:函数应用题,就是用函数的方法解决的实际问题.这类问题的解基本策略是从实际问题中找出函数关系.
    【例1】
    (2023·山东济南·统考中考真题)
    7.某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.
    (1)求A型,B型机器人模型的单价分别是多少元?
    (2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?
    【变1】
    (2023·湖北黄石·统考中考真题)
    8.某工厂计划从现在开始,在每个生产周期内生产并销售完某型号设备,该设备的生产成本为万元/件.设第个生产周期设备的售价为万元/件,售价与之间的函数解析式是,其中是正整数.当时,;当时,.
    (1)求,的值;
    (2)设第个生产周期生产并销售完设备的数量为件,且y与x满足关系式.
    当时,工厂第几个生产周期获得的利润最大?最大的利润是多少万元?
    当时,若有且只有个生产周期的利润不小于万元,求实数的取值范围.
    (2023·江苏连云港·统考中考真题)
    9.目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:
    (1)一户家庭人口为3人,年用气量为,则该年此户需缴纳燃气费用为__________元;
    (2)一户家庭人口不超过4人,年用气量为,该年此户需缴纳燃气费用为元,求与的函数表达式;
    (3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到)
    (2023·内蒙古呼和浩特·统考中考真题)
    10.学校通过劳动教育促进学生树德、增智、强体、育美全面发展,计划组织八年级学生到“开心”农场开展劳动实践活动.到达农场后分组进行劳动,若每位老师带38名学生,则还剩6名学生没老师带;若每位老师带40名学生,则有一位老师少带6名学生.劳动实践结束后,学校在租车总费用2300元的限额内,租用汽车送师生返校,每辆车上至少要有1名老师.现有甲、乙两种大型客车,它们的载客量和租金如下表所示
    (1)参加本次实践活动的老师和学生各有多少名?
    (2)租车返校时,既要保证所有师生都有车坐,又要保证每辆车上至少有1名老师,则共需租车________辆;
    (3)学校共有几种租车方案?最少租车费用是多少?
    (2023·黑龙江牡丹江·统考中考真题)
    11.某商场欲购进A和B两种家电,已知B种家电的进价比A种家电的进价每件多100元,经计算,用1万元购进A种家电的件数与用1.2万元购进B种家电的件数相同.请解答下列问题:
    (1)这两种家电每件的进价分别是多少元?
    (2)若该商场欲购进两种家电共100件,总金额不超过53500元,且A种家电不超过67件,则该商场有哪几种购买方案?
    (3)在(2)的条件下,若A和B两种家电的售价分别是每件600元和750元,该商场从这100件中拿出两种家电共10件奖励优秀员工,其余家电全部售出后仍获利5050元,请直接写出这10件家电中B种家电的件数.
    (2023·吉林·统考中考真题)
    12.甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和与甲组挖掘时间(天)之间的关系如图所示.
    (1)甲组比乙组多挖掘了__________天.
    (2)求乙组停工后关于的函数解析式,并写出自变量的取值范围.
    (3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.
    (2023·江苏扬州·统考中考真题)
    13.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.
    (1)甲、乙两种头盔的单价各是多少元?
    (2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?
    (2023·河南·统考中考真题)
    14.某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.
    活动一:所购商品按原价打八折;
    活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)
    (1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.
    (2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.
    (3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.
    (2023·江苏·统考中考真题)
    15.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用时,结束后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度为.两车之间的距离与慢车行驶的时间的函数图像如图所示.

    (1)请解释图中点的实际意义;
    (2)求出图中线段所表示的函数表达式;
    (3)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
    (2023·黑龙江绥化·统考中考真题)
    16.某校组织师生参加夏令营活动,现准备租用、两型客车(每种型号的客车至少租用一辆).型车每辆租金元,型车每辆租金元.若辆型和辆型车坐满后共载客人;辆型和辆型车坐满后共载客人.

    (1)每辆型车、型车坐满后各载客多少人?
    (2)若该校计划租用型和型两种客车共辆,总租金不高于元,并将全校人载至目的地.该校有几种租车方案?哪种租车方案最省钱?
    (3)在这次活动中,学校除租用、两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为千米,甲车从学校出发小时后,乙车才从学校出发,却比甲车早小时到达目的地.下图是两车离开学校的路程(千米)与甲车行驶的时间(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,为何值时两车相距千米.
    (2023·四川德阳·统考中考真题)
    17.2022年8月27日至29日,以“新能源、新智造、新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题,着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区,规划面积平方公里,计划2025年基本建成.若甲、乙两个工程队计划参与修建“特色小镇”中的某项工程,已知由甲单独施工需要18个月完成任务,若由乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元,向乙工程队支付施工费用5万元.
    (1)乙队单独完工需要几个月才能完成任务?
    (2)为保证该工程在两年内完工,且尽可能的减少成本,承建公司决定让甲、乙两个工程队同时施工,并将该工程分成两部分,甲队完成其中一部分工程用了a个月,乙队完成另一部分工程用了b个月,已知甲队施工时间不超过6个月,乙队施工时间不超过24个月,且a,b为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?
    (2023·湖北襄阳·统考中考真题)
    18.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):
    针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.
    (1)求m、n的值;
    (2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;
    (3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a()元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.
    (2022·山东枣庄·统考中考真题)
    19.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:
    (1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;
    (2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;
    (3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?
    (2023·四川攀枝花·统考中考真题)
    20.拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为,选取与塔底在同一水平地面上的、两点,分别垂直地面竖立两根高为的标杆和,两标杆间隔为,并且东塔、标杆和在同一竖直平面内.从标杆后退到处(即),从处观察点,、、在一直线上;从标杆后退到处(即),从处观察A点,A、、三点也在一直线上,且、、、、在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔的高度.

    (2023·山东济南·统考中考真题)
    21.图1是某越野车的侧面示意图,折线段表示车后盖,已知,,,该车的高度.如图2,打开后备箱,车后盖落在处,与水平面的夹角.

    (1)求打开后备箱后,车后盖最高点到地面的距离;
    (2)若小琳爸爸的身高为,他从打开的车后盖处经过,有没有碰头的危险?请说明理由.
    (结果精确到,参考数据:,,,)
    购票人数(人)
    每人门票价(元)
    60
    50
    40
    豆沙粽数量
    肉粽数量
    付款金额
    小欢妈妈
    20
    30
    270
    小乐妈妈
    30
    20
    230
    阶梯
    年用气量
    销售价格
    备注
    第一阶梯
    (含400)的部分
    2.67元
    若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加.
    第二阶梯
    (含1200)的部分
    3.15元
    第三阶梯
    以上的部分
    3.63元
    甲型客车
    乙型客车
    载客量/(人/辆)
    45
    30
    租金/(元/辆)
    400
    280
    次数
    数量(支)
    总成本(元)
    海鲜串
    肉串
    第一次
    3000
    4000
    17000
    第二次
    4000
    3000
    18000
    时间x(天)
    3
    5
    6
    9
    ……
    硫化物的浓度y(mg/L)
    4.5
    2.7
    2.25
    1.5
    ……
    参考答案:
    1.(1)小明家这个星期轿车行驶的路程为147km;(2)一个月行驶的路程为630km;(3)小明家一年(按12个月算)的汽油费用约为3568元.
    【分析】(1)记录数字的和再加上7个20即可得到结果;
    (2)求出每天平均的路程,乘以30即可得到结果;
    (3)由每天平均的路程,求出一年行驶的路程,除以100得到耗油的升数,乘以每升油的价格即可得到总费用.
    【详解】(1)根据题意得:3+5+(−4)+2.5+(−5)+(−4.5)+10+20×7=3+5+4+2.5+5+4.5+10+7×20=147(km),
    则小明家这个星期轿车行驶的路程为147km;
    (2)根据题意得:30×=630(km),
    则一个月行驶的路程为630km;
    (3)根据题意得:(12×630)÷100×8×5.90=3568.323568(元),
    则小明家一年(按12个月算)的汽油费用约为3568元.
    【点睛】此题考查了有理数的混合运算,以及正数与负数,弄清题意是及解本题的关键.
    2.(1)组分组积分赛对阵表见解答过程;
    (2)本届世界杯冠军阿根廷队在决赛阶段一共踢了7场比赛;
    (3)本届世界杯32支球队在决赛阶段一共踢了64场比赛.
    【分析】(1)根据同组内每2支球队之间都只进行一场比赛列表即可;
    (2)冠军阿根廷队分组积分赛踢了3场,决赛,决赛,半决赛,决赛又踢了4场,即可得到答案;
    (3)分组积分赛48场,决赛一共8场,决赛一共4场,半决赛2场,冠、亚军决赛和三、四名决赛各1场,相加即可.
    【详解】(1)组分组积分赛对阵表:
    (2)冠军阿根廷队分组积分赛踢了3场,决赛,决赛,半决赛,决赛又踢了4场,
    一共踢了(场),
    本届世界杯冠军阿根廷队在决赛阶段一共踢了7场比赛;
    (3)分组积分赛每个小组6场,8个小组一共(场);
    决赛一共8场,决赛一共4场,半决赛2场,冠、亚军决赛和三、四名决赛各1场;
    一共踢了(场);
    本届世界杯32支球队在决赛阶段一共踢了64场比赛.
    【点睛】本题考查数学在实际生活中的应用,解题的关键是读懂题意,理解世界杯比赛的对阵规则.
    3.(1)甲团队有48人,乙团队有54人
    (2)18
    【分析】(1)设甲团队有人,则乙团队有人,依题意得,,计算求解,然后作答即可;
    (2)设甲团队有人,则乙团队有人,依题意得,,计算求解即可.
    【详解】(1)解:设甲团队有人,则乙团队有人,
    依题意得,,
    解得,,
    ∴(人),
    ∴甲团队有48人,乙团队有54人;
    (2)解:设甲团队有人,则乙团队有人,
    依题意得,,
    解得,,
    ∴甲团队最少18人.
    【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用.解题的关键在于根据题意正确的列等式和不等式.
    4.(1)豆沙粽的单价为4元,肉粽的单价为8元
    (2)①豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②
    【分析】(1)设豆沙粽的单价为x元,则肉粽的单价为元,依题意列一元一次方程即可求解;
    (2)①设豆沙粽优惠后的单价为a元,则肉粽优惠后的单价为b元,依题意列二元一次方程组即可求解;
    ②根据销售额=销售单价销售量,列一元二次方程,解之即可得出m的值.
    【详解】(1)解:设豆沙粽的单价为x元,则肉粽的单价为元,
    依题意得,
    解得;
    则;
    所以豆沙粽的单价为4元,肉粽的单价为8元;
    (2)解:①设豆沙粽优惠后的单价为a元,则肉粽优惠后的单价为b元,
    依题意得,解得,
    所以豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;
    ②依题意得,
    解得或,

    ∴,

    【点睛】本题考查了一元二次方程的应用、二元一次方程组的应用和一元一次方程的应用,根据题意找到题中的等量关系列出方程或方程组是解题的关键.
    5.(1)
    (2)小型汽车从点行驶到点没有超速.
    【分析】(1)证明四边形为矩形,可得,结合,,,可得,,再利用线段的和差关系可得答案;
    (2)先计算小型汽车的速度,再统一单位后进行比较即可.
    【详解】(1)解:∵点、点到的距离分别为,
    ∴,,而,
    ∴,
    ∴四边形为矩形,
    ∴,
    由题意可得:,,,
    ∴,,

    (2)∵小型汽车从点行驶到点所用时间为.
    ∴汽车速度为,
    ∵该隧道限速80千米/小时,
    ∴,
    ∵,
    ∴小型汽车从点行驶到点没有超速.
    【点睛】本题考查的是解直角三角形的应用,理解俯角的含义,熟练的运用锐角三角函数解题是关键.
    6.
    【分析】过点作,垂足为,根据题意可得:,,然后设,在中,利用锐角三角函数的定义求出的长,从而求出的长,再根据垂直定义可得,从而证明字模型相似三角形,最后利用相似三角形的性质可得,从而列出关于的方程,进行计算即可解答.
    【详解】解:过点作,垂足为,

    由题意得:,,
    设,
    在中,,


    ,,







    解得:,

    该景观灯的高约为.
    【点睛】本题考查了解直角三角形的应用仰角俯角问题,相似三角形的应用,中心投影,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    7.(1)A型编程机器人模型单价是500元,B型编程机器人模型单价是300元
    (2)购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元
    【分析】(1)设A型编程机器人模型单价是元,B型编程机器人模型单价是元,根据:用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同即可列出关于x的分式方程,解方程并检验后即可求解;
    (2)设购买A型编程机器人模型台,购买A型和B型编程机器人模型共花费元,根据题意可求出m的范围和W关于m的函数关系式,再结合一次函数的性质即可求出最小值
    【详解】(1)解:设A型编程机器人模型单价是元,B型编程机器人模型单价是元.
    根据题意,得
    解这个方程,得
    经检验,是原方程的根.
    答:A型编程机器人模型单价是500元,B型编程机器人模型单价是300元.
    (2)设购买A型编程机器人模型台,购买B型编程机器人模型台,购买A型和B型编程机器人模型共花费元,
    由题意得:,解得.

    即,
    ∵,
    ∴随的增大而增大.
    ∴当时,取得最小值11200,此时;
    答:购买A型机器人模型10台和B型机器人模型30台时花费最少,最少花费是11200元.
    【点睛】本题考查了分式方程的应用、一元一次不等式的应用和一次函数的性质,正确理解题意、找准相等与不等关系、得出分式方程与不等式是解题的关键.
    8.(1),;
    (2),;.
    【分析】()用待定系数法求出,的值即可;
    ()当,根据利润(售价成本)设备的数量,可得出关于的二次函数,由函数的性质求出最值;
    当时,关于的函数解析式,再画出关于的函数图象的简图,由题意可得结论.
    【详解】(1)把时,;时,代入得:
    ,解得:,;
    (2)设第个生产周期创造的利润为万元,由()知,当时,,
    ∴,


    ∵,,
    ∴当时,取得最大值,最大值为,
    ∴工厂第个生产周期获得的利润最大,最大的利润是万元;
    当时,,
    ∴,
    ∴,
    则与的函数图象如图所示:

    由图象可知,若有且只有个生产周期的利润不小于万元,
    ∴当,时,,
    当,时,,
    ∴的取值范围.
    【点睛】此题考查了一次函数与二次函数在销售问题中的应用,明确一次函数与二次函数的性质并分类讨论是解题的关键.
    9.(1)534
    (2)
    (3)26立方米
    【分析】(1)根据第一阶梯的费用计算方法进行计算即可;
    (2)根据“单价×数量=总价”可得y与x之间的函数关系式;
    (3)根据两户的缴费判断收费标准列式计算即可解答.
    【详解】(1)∵,
    ∴该年此户需缴纳燃气费用为:(元),
    故答案为:534;
    (2)关于的表达式为
    (3)∵,
    ∴甲户该年的用气量达到了第三阶梯.
    由(2)知,当时,,解得.
    又∵,
    且,
    ∴乙户该年的用气量达到第二阶梯,但末达到第三阶梯.
    设乙户年用气量为.则有,
    解得,
    ∴.
    答:该年乙户比甲户多用约26立方米的燃气.
    【点睛】本题考查了一次函数的应用,一元一次方程的应用以及列代数式,解题的关键是找准等量关系,正确列出一元一次方程.
    10.(1)参加本次实践活动的老师有6名,学生有234名
    (2)6
    (3)学校共有两套租车方案,最少租车费用是2160元
    【分析】(1)设参加本次实践活动的老师有x名,根据“若每位老师带38名学生,则还剩6名学生没老师带;若每位老师带40名学生,则有一位老师少带6名学生”列出方程求解即可;
    (2)根据每辆车上至少有1名老师,参加本次实践活动的老师有6名,得出汽车总数不超过6辆,根据要保证所有师生都有车坐,得出汽车总数不少于辆,即可解答;
    (3)设租用甲客车a辆,则租用乙客车辆,列出不等式组,解得,设租车费用为y元,得出,根据一次函数增减性得出y随a的增大而增大,即可解答.
    【详解】(1)解:设参加本次实践活动的老师有x名,

    解得:,
    ∴,
    答:参加本次实践活动的老师有6名,学生有234名;
    (2)解:∵每辆车上至少有1名老师,参加本次实践活动的老师有6名,
    ∴汽车总数不超过6辆,
    ∵要保证所有师生都有车坐,
    ∴汽车总数不少于(辆),则汽车总数最少为6辆,
    ∴共需租车6辆,
    故答案为:6.
    (3)解:设租用甲客车a辆,则租用乙客车辆,

    解得:,
    ∵a为整数,
    ∴或,
    方案一:租用甲客车4辆,则租用乙客车2辆;
    方案二:租用甲客车5辆,则租用乙客车1辆;
    设租车费用为y元,

    ∵,
    ∴y随a的增大而增大,
    ∴当时,y最小,,
    综上:学校共有两套租车方案,最少租车费用是2160元.
    【点睛】本题主要考查了一元一次方程的实际应用,一元一次不等式组的实际应用,一次函数的实际应用,解题的关键是正确理解题意,根据题意找出数量关系,列出方程、不等式组、一次函数表达式.
    11.(1)A种家电每件的进价为500元,B种家电每件的进价为600元
    (2)共有三种购买方案,方案一:购进A种家电65件,B种家电35件,方案二:购进A种家电66件,B种家电34件,方案三:购进A种家电67件,B种家电33件
    (3)这10件家电中B种家电的件数4件
    【分析】(1)根据题意设A种家电每件进价为x元,B种家电每件进价为元,建立分式方程求解即可;
    (2)设购进A种家电a件,购进B种家电件,建立不等式,求解不等式,选择符合实际的解即可;
    (3)设A种家电拿出件,则B种家电拿出件,根据题意,建立一元一次方程求解即可.
    【详解】(1)设A种家电每件进价为x元,B种家电每件进价为元.
    根据题意,得

    解得.
    经检验是原分式方程的解.

    答:A种家电每件的进价为500元,B种家电每件的进价为600元;
    (2)设购进A种家电a件,购进B种家电件.
    根据题意,得.
    解得.
    ,.
    为正整数,,则,
    共有三种购买方案,
    方案一:购进A种家电65件,B种家电35件,
    方案二:购进A种家电66件,B种家电34件,
    方案三:购进A种家电67件,B种家电33件;
    (3)解:设A种家电拿出件,则B种家电拿出件,
    根据(1)和(2)及题意,当购进A种家电65件,B种家电35件时,得:

    整理得:,
    解得:,不符合实际;
    当购进A种家电66件,B种家电34件时,得:

    整理得:,
    解得:,不符合实际;
    当购进A种家电67件,B种家电33件时,得:

    整理得:,
    解得:,符合实际;则B种家电拿出件.
    【点睛】本题考查分式方程的实际问题,一元一次方程的实际问题与一元一次不等的实际问题,正确理解题意,建立正确的等量关系与不等式是解题的关键,注意结果要符合实际及分式方程的检验.
    12.(1)30
    (2)
    (3)10天
    【分析】本题考查了一次函数的应用,待定系数法求函数的解析式,理解题意观察图像得到有用信息是解题的关键.
    (1)由图可知,前30天甲乙两组合作,30天以后甲组单独做,据此计算即可;
    (2)设乙组停工后关于函数解析式为,用待定系数法求解,再结合图像即可得到自变量的取值范围;
    (3)先计算甲乙两组每天各挖掘多少千米,再计算乙组挖掘的总长度,设乙组已停工的天数为,根据甲组挖掘的总长度与乙组挖掘的总长度相等列方程计算即可.
    【详解】(1)解:由图可知,前30天甲乙两组合作,30天以后甲组单独做,
    ∴甲组挖掘了60天,乙组挖掘了30天,
    (天)
    ∴甲组比乙组多挖掘了30天,
    故答案为:30;
    (2)解:设乙组停工后关于的函数解析式为,
    将和两个点代入,可得,解得,
    ∴;
    (3)解:甲组每天挖(米);甲乙合作每天挖(米);
    ∴乙组每天挖(米),乙组挖掘的总长度为(米),
    设乙组己停工的天数为,则,解得,
    答:乙组已停工的天数为10天.
    13.(1)甲、乙两种头盔的单价各是65元, 54元.
    (2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.
    【分析】(1)设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得,求解;
    (2)设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.
    【详解】(1)解:设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得
    解得,,

    答:甲、乙两种头盔的单价各是65元, 54元.
    (2)解:设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,
    则,解得,故最小整数解为,

    ∵,则w随m的增大而增大,
    ∴时,w取最小值,最小值.
    答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.
    【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.
    14.(1)活动一更合算
    (2)400元
    (3)当或时,活动二更合算
    【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;
    (2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;
    (3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.
    【详解】(1)解:购买一件原价为450元的健身器材时,
    活动一需付款:元,活动二需付款:元,
    ∴活动一更合算;
    (2)设这种健身器材的原价是元,
    则,
    解得,
    答:这种健身器材的原价是400元,
    (3)这种健身器材的原价为a元,
    则活动一所需付款为:元,
    活动二当时,所需付款为:元,
    当时,所需付款为:元,
    当时,所需付款为:元,
    ①当时,,此时无论为何值,都是活动一更合算,不符合题意,
    ②当时,,解得,
    即:当时,活动二更合算,
    ③当时,,解得,
    即:当时,活动二更合算,
    综上:当或时,活动二更合算.
    【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.
    15.(1)快车到达乙地时,慢车距离乙地还有
    (2)
    (3)小时
    【分析】(1)根据点的纵坐标最大,可得两车相距最远,结合题意,即可求解;
    (2)根据题意得出,进而待定系数法求解析式,即可求解;
    (3)先求得快车的速度进而得出总路程,再求得快车返回的速度,即可求解.
    【详解】(1)解:根据函数图象,可得点的实际意义为:快车到达乙地时,慢车距离乙地还有
    (2)解:依题意,快车到达乙地卸装货物用时,则点的横坐标为,
    此时慢车继续行驶小时,则快车与慢车的距离为,

    设直线的表达式为

    解得:
    ∴直线的表达式为
    (3)解:设快车去乙地的速度为千米/小时,则,
    解得:
    ∴甲乙两地的距离为千米,
    设快车返回的速度为千米/小时,根据题意,
    解得:,
    ∴两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需(小时)
    【点睛】本题考查了一次函数的应用,一元一次方程,根据函数图象获取信息是解题的关键.
    16.(1)每辆型车、型车坐满后各载客人、人
    (2)共有种租车方案,租辆型车,辆型车最省钱
    (3)在甲乙两车第一次相遇后,当小时或小时时,两车相距千米
    【分析】(1)设每辆型车、型车坐满后各载客人、人,由题意列出二元一次方程组,解方程组即可求解;
    (2)设租用型车辆,则租用型车辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出的值,设总租金为元,根据一次函数的性质即可求解;
    (3)设,,由题意可知,甲车的函数图像经过;乙车的函数图像经过,两点.求出函数解析式,进而即可求解.
    【详解】(1)解:设每辆型车、型车坐满后各载客人、人,由题意得

    解得
    答:每辆型车、型车坐满后各载客人、人
    (2)设租用型车辆,则租用型车辆,由题意得
    解得:
    取正整数,
    ,,,
    共有种租车方案
    设总租金为元,则
    随着的增大而减小
    时,最小
    租辆型车,辆型车最省钱
    (3)设,.
    由题意可知,甲车的函数图象经过;乙车的函数图象经过,两点.
    ∴,
    ,即
    解得

    解得
    所以,在甲乙两车第一次相遇后,当小时或小时时,两车相距25千米.
    【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意找到等量关系,列出方程组,不等式组,以及函数解析式是解题的关键.
    17.(1)乙队单独完工需要27个月才能完成任务.
    (2)甲乙两队实际施工的时间安排有3种方式,安排甲工作2个月,乙工作24个月,费用最低为万元.
    【分析】(1)设乙单独完成需要个月,由“乙先单独施工2个月,再由甲、乙合作施工10个月恰好完成任务.”建立分式方程求解即可;
    (2)由题意可得:,可得,结合,,可得,结合都为正整数,可得为3的倍数,可得甲乙两队实际施工的时间安排有3种方式,从而可得答案.
    【详解】(1)解:设乙单独完成需要个月,则

    解得:,
    经检验是原方程的解且符合题意;
    答:乙队单独完工需要27个月才能完成任务.
    (2)由题意可得:,
    ∴,
    ∴,
    ∵,,
    ∴,解得:,
    ∵都为正整数,
    ∴为3的倍数,
    ∴或或,
    ∴甲乙两队实际施工的时间安排有3种方式,
    方案①:安排甲工作6个月,乙工作18个月,费用为:(万元),
    方案②:安排甲工作4个月,乙工作21个月,费用为:(万元),
    方案③:安排甲工作2个月,乙工作24个月,费用为:(万元),
    ∴安排甲工作2个月,乙工作24个月,费用最低为万元.
    【点睛】本题考查的是分式方程的应用,二元一次方程的应用,一元一次不等式组的应用,确定相等关系与不等关系是解本题的关键.
    18.(1)的值为3,的值为2
    (2)
    (3)0.5
    【分析】(1)根据表格数据列出方程组,解方程组即可求出、的值;
    (2)分两种情况讨论,根据题意,结合“总利润每支利润数量”分别列出代数式即可求出与的函数关系式,注意写出自变量的取值范围;
    (3)设降价后获得肉串的总利润为元,令,先根据题意列出关于的关系式,再写出关于的关系式,根据函数增减性和题中数量关系即可求出结果.
    【详解】(1)解:根据表格可得:,
    解得:,
    ∴的值为3,的值为2;
    (2)当时,店主获得海鲜串的总利润;
    当时,店主获得海鲜串的总利润;
    ∴;
    (3)设降价后获得肉串的总利润为元,令,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴随的增大而减小,
    当时,的值最小,
    由题意可得:,
    ∴,
    即,
    解得:,
    ∴的最大值是0.5.
    【点睛】本题主要考查一次函数的应用,熟练掌握一次函数的性质和应用以及二元一次方程组的应用是解决问题的关键.
    19.(1)线段AC的函数表达式为:y=﹣2.5x+12(0≤x<3);
    (2)y=(x≥3);
    (3)该企业所排污水中硫化物的浓度可以在15天以内不超过最高允许的1.0mg/L,理由见解析.
    【分析】(1)设线段AC的函数表达式为:y=kx+b,把A、C两点坐标代入求出k、b的值即可;
    (2)设函数的表达式为:y=,把C点坐标代入,求出k的值即可;
    (3)根据(2)所得表达式,求出x=15时,y的值与硫化物浓度允许的最高值比较即可.
    【详解】(1)解:由前三天的函数图像是线段,设函数表达式为:y=kx+b
    把(0,12)(3,4.5)代入函数关系式,得 ,
    解得:k=﹣2.5,b=12
    ∴当0≤x<3时,硫化物的浓度y与时间x的函数表达式为:y=﹣2.5x+12;
    (2)解:当x≥3时,设y=,
    把(3,4.5)代入函数表达式,得4.5=,
    解得k=13.5,
    ∴当x≥3时,硫化物的浓度y与时间x的函数表达式为:y= ;
    (3)解:能,理由如下:
    当x=15时,y==0.9,
    因为0.9<1,
    所以该企业所排污水中硫化物的浓度,能在15天以内不超过最高允许的1.0mg/L.
    【点睛】本题考查一次函数和反比例函数,熟练掌握根据坐标确定解析式的一次项系数和常数项是解题关键.
    20.36m
    【分析】设,则,通过证明,得到,即,同理得到,则可建立方程,解方程即可得到答案.
    【详解】解:设,则
    ∵,,
    ∴,
    ∴,
    ∴,即,
    同理可证,
    ∴,即,
    ∴,
    解得,
    经检验,是原方程的解,
    ∴,
    ∴,
    ∴该古建筑的高度为36m.
    【点睛】本题主要考查了相似三角形的应用,利用相似三角形的性质建立方程是解题的关键.
    21.(1)车后盖最高点到地面的距离为
    (2)没有危险,详见解析
    【分析】(1)作,垂足为点,先求出的长,再求出的长即可;
    (2)过作,垂足为点,先求得,再得到,再求得,从而得出到地面的距离为,最后比较即可.
    【详解】(1)如图,作,垂足为点

    在中
    ∵,


    ∵平行线间的距离处处相等

    答:车后盖最高点到地面的距离为.
    (2)没有危险,理由如下:
    过作,垂足为点

    ∵,



    在中,
    ∴.
    ∵平行线间的距离处处相等
    ∴到地面的距离为.

    ∴没有危险.
    【点睛】本题主要考查了解直角三角形的应用,掌握直角三角形的边角关系是解题的关键.
    阿根廷
    沙特
    墨西哥
    波兰
    阿根廷
    阿根廷:沙特
    阿根廷:墨西哥
    阿根廷:波兰
    沙特
    沙特:阿根廷
    沙特:墨西哥
    沙特:波兰
    墨西哥
    墨西哥:阿根廷
    墨西哥:沙特
    墨西哥:波兰
    波兰
    波兰:阿根廷
    波兰:沙特
    波兰:墨西哥

    相关试卷

    模块四 题型全通关专题3 解答型题型第8讲 综合实践题 -最新中考数学二轮专题复习训练(含解析):

    这是一份模块四 题型全通关专题3 解答型题型第8讲 综合实践题 -最新中考数学二轮专题复习训练(含解析),共43页。

    模块四 题型全通关专题3 解答型题型第6讲 阅读题 -最新中考数学二轮专题复习训练(含解析):

    这是一份模块四 题型全通关专题3 解答型题型第6讲 阅读题 -最新中考数学二轮专题复习训练(含解析),共35页。试卷主要包含了,分式的性质;等内容,欢迎下载使用。

    模块四 题型全通关专题3 解答型题型第5讲 探究题 -最新中考数学二轮专题复习训练(含解析):

    这是一份模块四 题型全通关专题3 解答型题型第5讲 探究题 -最新中考数学二轮专题复习训练(含解析),共67页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map