终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    模块二 知识全整合专题4 图形的性质 第5讲 直角三角形与勾股定理 (含解析)-最新中考数学二轮专题复习训练

    立即下载
    加入资料篮
    模块二 知识全整合专题4 图形的性质 第5讲 直角三角形与勾股定理 (含解析)-最新中考数学二轮专题复习训练第1页
    模块二 知识全整合专题4 图形的性质 第5讲 直角三角形与勾股定理 (含解析)-最新中考数学二轮专题复习训练第2页
    模块二 知识全整合专题4 图形的性质 第5讲 直角三角形与勾股定理 (含解析)-最新中考数学二轮专题复习训练第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模块二 知识全整合专题4 图形的性质 第5讲 直角三角形与勾股定理 (含解析)-最新中考数学二轮专题复习训练

    展开

    这是一份模块二 知识全整合专题4 图形的性质 第5讲 直角三角形与勾股定理 (含解析)-最新中考数学二轮专题复习训练,共33页。试卷主要包含了知识全整合等内容,欢迎下载使用。
    专题4 图形的性质
    第5讲 直角三角形与勾股定理
    一、直角三角形
    1.直角三角形的性质
    (1)两锐角互余;
    (2)斜边的中线等于斜边的一半;
    (3)30°角所对的直角边等于斜边的一半;
    2.直角三角形的判定
    (1)有一个内角是直角的三角形是直角三角形;
    (2)三角形一边上的中线等于这边的一半,这个三角形是直角三角形;
    二、勾股定理
    1.勾股定理:直角三角形两条直角边的平方和等于斜边的平方,即(c为斜边);
    2.勾股定理的运用
    (1)已知直角三角形任意两边的长,用勾股定理直接求第三边的长;
    (2)已知直角三角形一边的长和另外两边的关系,用勾股定理建立方程计算;
    (3)已知直角三角形三边的关系,用勾股定理建立方程计算;
    3.勾股定理的证明
    勾股定理的证明常采用构造图形,用两种方式计算面积,利用面积相等来证明。
    4.常见结论
    (1)含30°角的直角三角形的三边的比(由小到大):;
    (2)含45°角的直角三角形的三边比(由小到大):;
    三、勾股定理的逆定理
    1.勾股定理的逆定理:如果一个三角形两边的平方和等于第三边的平方,这个三角形是直角三角形;
    2.勾股定理的逆定理的运用
    (1)已知三角形三边的长,直接把两个较短边的平方和与较长的边的平方比较后得出结论;
    (2)已知三角形三边的关系,先设定参数,再用含参的代数式表示三条边,最后把两个较短边的平方和与较长的边的平方比较后得出结论;
    3.勾股数:能构成直角三角形的三条边长的三个正整数,称为勾股数;
    《义务教育数学课程标准》2022年版,学业质量要求:
    1.理解直角三角形的概念;
    2.探索并掌握直角三角形的性质定理:直角三角形两个锐角互余,直角三角形斜边上的中线等于斜边的一半;
    3.掌握有两个角互余的三角形是直角三角形;
    4.探索勾股定理及逆定理,并能运用它们解决一些简单的实际问题;
    【例1】(2023·湖北十堰·统考一模)
    1.如图,这是一个供滑板爱好者使用的形池,该形池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是弧长为的半圆,其边缘(边缘的宽度忽略不计),点在上,一滑板爱好者从点滑到点,则他滑行的最短距离为( )

    A.B.C.D.
    【变1】(2022·山东济宁·统考中考真题)
    2.如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
    A.B.C.D.
    【例1】
    (2022·湖南·统考中考真题)
    3.如图,点是等边三角形内一点,,,,则与的面积之和为( )
    A.B.C.D.
    【变1】(2023·广东·统考中考真题)
    4.综合与实践
    主题:制作无盖正方体形纸盒
    素材:一张正方形纸板.
    步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;
    步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒.
    猜想与证明:

    (1)直接写出纸板上与纸盒上的大小关系;
    (2)证明(1)中你发现的结论.
    【例1】(2023·广东广州·统考中考真题)
    5.如图,海中有一小岛A,在B点测得小岛A在北偏东30°方向上,渔船从B点出发由西向东航行10到达C点,在C点测得小岛A恰好在正北方向上,此时渔船与小岛A的距离为( )

    A.B.C.20D.
    【变1】(2023·吉林·统考中考真题)
    6.如图,在中,.点,分别在边,上,连接,将沿折叠,点的对应点为点.若点刚好落在边上,,则的长为 .

    【例1】(2023·河北·统考中考真题)
    7.如图,在中,,点M是斜边的中点,以为边作正方形,若,则( )

    A.B.C.12D.16
    【变1】(2023·辽宁沈阳·统考中考真题)
    8.如图,在中,,,点在直线上,,过点作直线于点,连接,点是线段的中点,连接,则的长为 .

    一、选择题
    (2023·宁夏·统考中考真题)
    9.将一副直角三角板和一把宽度为2cm的直尺按如图方式摆放:先把和角的顶点及它们的直角边重合,再将此直角边垂直于直尺的上沿,重合的顶点落在直尺下沿上,这两个三角板的斜边分别交直尺上沿于,两点,则的长是( )

    A.B.C.2D.
    (2022·四川攀枝花·统考中考真题)
    10.如图1是第七届国际数学教育大会()的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形.若,,,则的值为( )
    A.B.C.D.1
    (2023·四川德阳·统考中考真题)
    11.如图.在中,,,,,点是边的中点,则( )

    A.B.C.2D.1
    (2023·广西南宁·统考二模)
    12.如图,一架长为的梯子斜靠在竖直的墙上,梯子的底端(点A)距墙角(点C)为.若梯子的底端水平向外滑动,梯子的顶端(点B)向下滑动多少米?若设梯子的顶端向下滑动x米,则根据题意可列方程为( )

    A.B.
    C.D.
    (2022·江苏南京·统考中考真题)
    13.直三棱柱的表面展开图如图所示,,,,四边形是正方形,将其折叠成直三棱柱后,下列各点中,与点距离最大的是( )

    A.点B.点C.点D.点
    (2023·江苏南通·统考中考真题)
    14.如图,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图所示,则的值为( )

    A.54B.52C.50D.48
    二、填空题
    (2023·辽宁·统考中考真题)
    15.如图,线段,点是线段上的动点,将线段绕点顺时针旋转得到线段,连接,在的上方作,使,点为的中点,连接,当最小时,的面积为 .

    (2023·广东深圳·统考中考真题)
    16.如图,与位于平面直角坐标系中,,,,若,反比例函数恰好经过点C,则 .
    (2023·江苏·统考中考真题)
    17.如图,小红家购置了一台圆形自动扫地机,放置在屋子角落(书柜、衣柜与地面均无缝隙).在没有障碍物阻挡的前提下,扫地机能自动从底座脱离后打扫全屋地面.若这台扫地机能从角落自由进出,则图中的x至少为 (精确到个位,参考数据:).

    (2023·江苏扬州·统考中考真题)
    18.如图,已知正方形的边长为1,点E、F分别在边上,将正方形沿着翻折,点B恰好落在边上的点处,如果四边形与四边形的面积比为3∶5,那么线段的长为 .

    (2023·四川广安·统考中考真题)
    19.如图,圆柱形玻璃杯的杯高为,底面周长为,在杯内壁离杯底的点处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿,且与蜂蜜相对的点处,则蚂蚁从外壁处到内壁处所走的最短路程为 .(杯壁厚度不计)

    三、解答题
    (2022·浙江丽水·统考中考真题)
    20.如图,将矩形纸片折叠,使点B与点D重合,点A落在点P处,折痕为.
    (1)求证:;
    (2)若,求的长.
    (2022·北京·统考中考真题)
    21.在中,,D为内一点,连接,,延长到点,使得
    (1)如图1,延长到点,使得,连接,,若,求证:;
    (2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.
    (2023·江苏·统考中考真题)
    22.综合与实践
    定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.
    (1)概念理解:
    当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是_________.
    (2)操作验证:
    用正方形纸片进行如下操作(如图(2)):
    第一步:对折正方形纸片,展开,折痕为,连接;
    第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;
    第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.
    试说明:矩形是1阶奇妙矩形.

    (3)方法迁移:
    用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.
    (4)探究发现:
    小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.
    参考答案:
    1.C
    【分析】滑行的距离最短,即是沿着的线段滑行,我们可将半圆展开为矩形来研究,展开后,、、三点构成直角三角形,为斜边,和为直角边,写出和的长,根据题意,由勾股定理即可得出的距离.
    【详解】解:将半圆面展开可得:

    米,米,
    在中,
    (米).
    即滑行的最短距离为米.
    故选:C.
    【点睛】本题考查了平面展开最短路径问题,型池的侧面展开图是一个矩形,此矩形的宽是半圆的弧长,矩形的长等于本题就是把型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
    2.A
    【分析】根据题意可得AD = AB = 2, ∠B = ∠ADB, CE= DE, ∠C=∠CDE,可得∠ADE = 90°,继而设AE=x,则CE=DE=3-x,根据勾股定理即可求解.
    【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,
    ∴AD = AB = 2, ∠B = ∠ADB,
    ∵折叠纸片,使点C与点D重合,
    ∴CE= DE, ∠C=∠CDE,
    ∵∠BAC = 90°,
    ∴∠B+ ∠C= 90°,
    ∴∠ADB + ∠CDE = 90°,
    ∴∠ADE = 90°,
    ∴AD2 + DE2 = AE2,
    设AE=x,则CE=DE=3-x,
    ∴22+(3-x)2 =x2,
    解得
    即AE=
    故选A
    【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.
    3.C
    【分析】将绕点B顺时针旋转得,连接,得到是等边三角形,再利用勾股定理的逆定理可得,从而求解.
    【详解】解:将绕点顺时针旋转得,连接,
    ,,,
    是等边三角形,

    ∵,,


    与的面积之和为

    故选:C.
    【点睛】本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将与的面积之和转化为,是解题的关键.
    4.(1)
    (2)证明见解析.
    【分析】(1)和均是等腰直角三角形,;
    (2)证明是等腰直角三角形即可.
    【详解】(1)解:
    (2)证明:连接,

    设小正方形边长为1,则,,

    为等腰直角三角形,
    ∵,
    ∴为等腰直角三角形,


    【点睛】此题考查了勾股定理及其逆定理的应用和等腰三角形的性质,熟练掌握其性质是解答此题的关键.
    5.D
    【分析】连接,此题易得,得,再利用勾股定理计算即可.
    【详解】解:连接,

    由已知得:,,,
    ∴,
    在中,,
    ∴(),
    故选:D
    【点睛】此题考查的知识点是勾股定理的应用,直角三角形30度角的性质,关键是掌握勾股定理的计算.
    6.
    【分析】根据折叠的性质以及含30度角的直角三角形的性质得出,即可求解.
    【详解】解:∵将沿折叠,点的对应点为点.点刚好落在边上,在中,,,
    ∴,
    ∴,
    故答案为:.
    【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.
    7.B
    【分析】根据正方形的面积可求得的长,利用直角三角形斜边的中线求得斜边的长,利用勾股定理求得的长,根据三角形的面积公式即可求解.
    【详解】解:∵,
    ∴,
    ∵中,点M是斜边的中点,
    ∴,
    ∴,
    ∴,
    故选:B.
    【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.
    8.或
    【分析】分两种情况当在延长线上和当在上讨论,画出图形,连接,过点作于,利用勾股定理解题即可
    【详解】解:当在线段上时,连接,过点作于,

    当在线段上时,




    点是线段的中点,









    当在延长线上时,则,

    是线段的中点,,










    的长为或.
    故答案为:或.
    【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.
    9.B
    【分析】根据等腰直角三角形的性质可得,由含30度角直角三角形的性质可得,由勾股定理可得的长,即可得到结论.
    【详解】解:如图,在中,,

    ∴,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴.
    故选:B.
    【点睛】本题考查了勾股定理,等腰直角三角形的性质,含角直角三角形的性质,熟练掌握勾股定理是解题的关键.
    10.A
    【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.
    【详解】解:,,,
    ,,


    故选:A.
    【点睛】本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,熟练掌握直角三角形的性质是解题的关键.
    11.A
    【分析】根据勾股定理可先求得的长度,根据直角三角形的斜边上的中线与斜边的数量关系,可求得的长度,根据三角形的中位线定理可求得答案.
    【详解】∵,
    ∴为直角三角形.
    ∴.
    ∵点为的斜边的中点,
    ∴.
    ∵,,
    ∴.
    故选:A.
    【点睛】本题主要考查勾股定理、直角三角形的性质、三角形的中位线定理,牢记勾股定理、直角三角形的性质(直角三角形斜边上的中线等于斜边的一半)、三角形的中位线定理(三角形的中位线平行于三角形的第三边,并且等于第三边的一半)是解题的关键.
    12.C
    【分析】利用勾股定理可以得出梯子的初始高度,梯子的底端水平向外滑动后,可得出梯子的顶端距离地面的高度,再次使用勾股定理即可得出答案.
    【详解】解:则题意得,,
    ∴,
    梯子的底端水平向外滑动,梯子的顶端向下滑动x米,
    则,,
    由勾股定理得,

    故选:C.
    【点睛】本题考查的是勾股定理的应用,熟知勾股定理是解答此题的关键.
    13.B
    【分析】根据勾股定理的逆定理判定是直角三角形,折叠成直三棱柱后,运用勾股定理计算比较大小即可.
    【详解】∵,,,
    ∴,
    ∴是直角三角形,
    ∵四边形是正方形,将其折叠成直三棱柱,
    ∴直棱柱的高,
    ∴,,,,
    ∵,
    ∴选B.
    【点睛】本题考查了几何体的展开与折叠,勾股定理及其逆定理,熟练掌握展开图与折叠的意义是解题的关键.
    14.B
    【分析】根据点运动的路径长为,在图中表示出来,设,在直角三角形中,找到等量关系,求出未知数的值,得到的值.
    【详解】解:当时,由题意可知,

    在中,由勾股定理得,
    设,

    在中,由勾股定理得,
    在中,由勾股定理得,
    即,
    解得,


    当时,由题意可知,,
    设,

    在中,由勾股定理得,
    在中由勾股定理得,
    中,由勾股定理得,
    即,
    解得,




    故选:B.
    【点睛】本题主要考查勾股定理,根据勾股定理列出等式是解题的关键,运用了数形结合的思想解题.
    15.
    【分析】连接,交于点P,由直角三角形的性质及等腰三角形的性质可得垂直平分,为定角,可得点F在射线上运动,当时,最小,由含30度角直角三角形的性质即可求解.
    【详解】解:连接,交于点P,如图,
    ∵,点为的中点,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴;
    ∵线段绕点顺时针旋转得到线段,
    ∴,
    ∵,
    ∴垂直平分,,
    ∴点F在射线上运动,
    ∴当时,最小,
    此时,
    ∴;
    ∵,
    ∴,
    ∴,
    ∵,
    ∴由勾股定理得,
    ∴,
    ∴;

    故答案为:.
    【点睛】本题考查了等腰三角形性质,含30度直角三角形的性质,斜边中线性质,勾股定理,线段垂直平分线的判定,勾股定理,旋转的性质,确定点F的运动路径是关键与难点.
    16.
    【分析】过点C作轴于点D,由题意易得,然后根据含30度直角三角形的性质可进行求解.
    【详解】解:过点C作轴于点D,如图所示:

    ∵,,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    在中,,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∴点,
    ∴,
    故答案为:.
    【点睛】本题主要考查反比例函数的图象与性质及含30度直角三角形的性质,熟练掌握反比例函数的图象与性质及含30度直角三角形的性质是解题的关键.
    17.
    【分析】先建立直角三角形,利用勾股定理解决实际问题.
    【详解】解:如图过点A、B分别作墙的垂线,交于点C,
    则,,
    在中,,

    ∵这台扫地机能从角落自由进出,
    ∴这台扫地机的直径不小于长,
    即最小时为,
    解得:(舍),,
    ∴图中的x至少为,
    故答案为:.

    【点睛】本题考查勾股定理的实际应用,构造直角三角形是解题的关键.
    18.
    【分析】连接,过点作于点,设,则,则,根据已知条件,分别表示出,证明,得出,在中,,勾股定理建立方程,解方程即可求解.
    【详解】解:如图所示,连接,过点作于点,

    ∵正方形的边长为1,四边形与四边形的面积比为3∶5,
    ∴,
    设,则,则



    ∴,
    ∴,
    ∵折叠,
    ∴,
    ∴,
    ∵,
    ∴,
    又,
    ∴,

    在中,

    解得:,
    故答案为:.
    【点睛】本题考查了正方形的性质,折叠的性质,勾股定理,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.
    19.10
    【分析】如图(见解析),将玻璃杯侧面展开,作关于的对称点,根据两点之间线段最短可知的长度即为所求,利用勾股定理求解即可得.
    【详解】解:如图,将玻璃杯侧面展开,作关于的对称点,作,交延长线于点,连接,

    由题意得:,

    ∵底面周长为,


    由两点之间线段最短可知,蚂蚁从外壁处到内壁处所走的最短路程为,
    故答案为:10.
    【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
    20.(1)证明见解析
    (2)cm
    【分析】(1)利用ASA证明即可;
    (2)过点E作EG⊥BC交于点G,求出FG的长,设AE=xcm,用x表示出DE的长,在Rt△PED中,由勾股定理求得答案.
    【详解】(1)∵四边形ABCD是矩形,
    ∴AB=CD,∠A=∠B=∠ADC=∠C=90°,
    由折叠知,AB=PD,∠A=∠P,∠B=∠PDF=90°,
    ∴PD=CD,∠P=∠C,∠PDF =∠ADC,
    ∴∠PDF-∠EDF=∠ADC-∠EDF,
    ∴∠PDE=∠CDF,
    在△PDE和△CDF中,
    ,
    ∴(ASA);
    (2)如图,过点E作EG⊥BC交于点G,
    ∵四边形ABCD是矩形,
    ∴AB=CD=EG=4cm,
    又∵EF=5cm,∴cm,
    设AE=xcm,
    ∴EP=xcm,
    由知,EP=CF=xcm,
    ∴DE=GC=GF+FC=3+x,
    在Rt△PED中,,
    即,
    解得,,
    ∴BC=BG+GC= (cm).
    【点睛】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,根据翻折变换的性质将问题转化到直角三角形中利用勾股定理是解题的关键.
    21.(1)见解析
    (2);证明见解析
    【分析】(1)先利用已知条件证明,得出,推出,再由即可证明;
    (2)延长BC到点M,使CM=CB,连接EM,AM,先证,推出,通过等量代换得到,利用平行线的性质得出,利用直角三角形斜边中线等于斜边一半即可得到.
    【详解】(1)证明:在和中,

    ∴ ,
    ∴ ,
    ∴ ,
    ∵,
    ∴.
    (2)解:补全后的图形如图所示,,证明如下:
    延长BC到点M,使CM=CB,连接EM,AM,
    ∵,CM=CB,
    ∴ 垂直平分BM,
    ∴,
    在和中,

    ∴ ,
    ∴ ,,
    ∵,
    ∴ ,
    ∴ ,
    ∵,
    ∴,
    ∴ ,即,
    ∵,
    ∴ ,
    ∴ .
    【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明是解题的关键.
    22.(1);(2)见解析;(3),理由见解析
    【分析】(1)将代入,即可求解.
    (2)设正方形的边长为,根据折叠的性质,可得,设,则,在中,勾股定理建立方程,解方程,即可求解;
    (3)仿照(2)的方法得出2阶奇妙矩形.
    (4)根据(2)的方法,分别求得四边形的周长与矩形的周长,即可求解.
    【详解】解:(1)当时,,
    故答案为:.
    (2)如图(2),连接,

    设正方形的边长为,根据折叠的性质,可得
    设,则
    根据折叠,可得,,
    在中,,
    ∴,
    在中,

    解得:

    ∴矩形是1阶奇妙矩形.
    (3)用正方形纸片进行如下操作(如图):
    第一步:对折正方形纸片,展开,折痕为,再对折,折痕为,连接;
    第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;
    第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.
    矩形是2阶奇妙矩形,

    理由如下,连接,设正方形的边长为,根据折叠可得,则,

    设,则
    根据折叠,可得,,
    在中,,
    ∴,
    在中,

    解得:

    当时,
    ∴矩形是2阶奇妙矩形.
    (4)如图(4),连接诶,设正方形的边长为1,设,则,

    设,则
    根据折叠,可得,,
    在中,,
    ∴,
    在中,

    整理得,
    ∴四边形的边长为
    矩形的周长为,
    ∴四边形的周长与矩形的周长比值总是定值
    【点睛】本题考查了正方形的折叠问题,勾股定理,熟练掌握折叠的性质是解题的关键.

    相关试卷

    模块二 知识全整合专题4 图形的性质 第10讲 与圆有关的计算(含解析) -最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题4 图形的性质 第10讲 与圆有关的计算(含解析) -最新中考数学二轮专题复习训练,共41页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    模块二 知识全整合专题4 图形的性质 第9讲 圆的有关性质及与圆有关的位置关系(含解析) -最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题4 图形的性质 第9讲 圆的有关性质及与圆有关的位置关系(含解析) -最新中考数学二轮专题复习训练,共39页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    模块二 知识全整合专题4 图形的性质 第8讲 正方形 (含解析)-最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题4 图形的性质 第8讲 正方形 (含解析)-最新中考数学二轮专题复习训练,共43页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map