搜索
    上传资料 赚现金
    英语朗读宝

    浙江省宁波市宁波华茂国际学校2025届数学九年级第一学期开学复习检测试题【含答案】

    浙江省宁波市宁波华茂国际学校2025届数学九年级第一学期开学复习检测试题【含答案】第1页
    浙江省宁波市宁波华茂国际学校2025届数学九年级第一学期开学复习检测试题【含答案】第2页
    浙江省宁波市宁波华茂国际学校2025届数学九年级第一学期开学复习检测试题【含答案】第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省宁波市宁波华茂国际学校2025届数学九年级第一学期开学复习检测试题【含答案】

    展开

    这是一份浙江省宁波市宁波华茂国际学校2025届数学九年级第一学期开学复习检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为( )
    A.5cmB.10cmC.20cmD.40cm
    2、(4分)如图,直线过点和点,则方程的解是( )
    A.B.C.D.
    3、(4分)在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )
    A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)
    4、(4分)下列手机手势解锁图案中,既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    5、(4分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
    A.我爱美B.中华游C.爱我中华D.美我中华
    6、(4分)如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为( )
    A.2B.3C.4D.
    7、(4分)如图,线段由线段绕点按逆时针方向旋转得到,由沿方向平移得到,且直线过点.则( )
    A.B.C.D.
    8、(4分)在直角坐标系中,点关于原点对称的点为,则点的坐标是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 .
    10、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了100米,则山坡的高度BC为_____米.
    11、(4分)在直角坐标系中,直线与轴交于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,过点作平行于轴,交直线于点,以为边长作等边,…,则等边的边长是______.
    12、(4分)已知,若整数满足,则__________.
    13、(4分)如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,O是矩形ABCD对角线的交点,作,,DE,CE相交于点E,求证:四边形OCED是菱形.
    15、(8分)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,1,8,1,10,1,1,1.乙的成绩如图所示(单位:环)
    (1)分别计算甲、乙两人射击成绩的平均数;
    (2)若要选拔一人参加比赛,应派哪一位?请说明理由.
    16、(8分)综合与探究
    问题情境:
    在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.
    “兴趣小组”写出的两个数学结论是:
    ①S△OMC+S△ONC=S正方形ABCD;
    ②BM1+CM1=1OM1.
    问题解决:
    (1)请你证明“兴趣小组”所写的两个结论的正确性.
    类比探究:
    (1)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(1),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.
    17、(10分)已知一次函数的图象与正比例函数的图象的交点的纵坐标是4.且与轴的交点的横坐标是
    (1)求这个一次函数的解析式;(2)直接写出时的取值范围.
    18、(10分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).
    (1)求G点坐标
    (2)求直线EF解析式
    (3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___
    20、(4分)若y=,则x+y= .
    21、(4分)若有意义,则的取值范围是_______
    22、(4分)分解因时:=__________
    23、(4分)不等式组的解集为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
    (1)求的值;
    (2)以AB为一边,在AB的左侧作正方形,求C点坐标;
    (3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
    25、(10分)已知,在平面直角坐标系中,直线经过点和点.
    (1)求直线所对应的函数表达式.
    (2)若点在直线上,求的值.
    26、(12分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.
    (1)已知点,,________;
    (2)表示点和点之间的距离;
    (3)请借助图形,求的最小值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,AO=OC,
    ∵AM=BM,
    ∴BC=2MO=2×5cm=10cm,
    即AB=BC=CD=AD=10cm,
    即菱形ABCD的周长为40cm,
    故选D.
    本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.
    2、B
    【解析】
    一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解.
    【详解】
    解:∵直线y=ax+b过点B(−2,0),
    ∴方程ax+b=0的解是x=−2,
    故选:B.
    此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于确定已知直线y=ax+b与x轴的交点的横坐标的值.
    3、C
    【解析】
    试题分析:本题考查了点的坐标、关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减,纵坐标不变;根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,即平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),可得关于原点的对称点,再根据点的坐标向左平移减,纵坐标不变,可得答案.
    解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),
    故选C.
    考点:1.关于原点对称的点的坐标;2.坐标与图形变化-平移.
    4、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、不是轴对称图形,是中心对称图形,故此选项错误.
    故选:C.
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【解析】
    将原式进行因式分解即可求出答案.
    【详解】
    解:原式=(x2-y2)(a2-b2)=(x-y)(x+y)(a-b)(a+b)
    由条件可知,(x-y)(x+y)(a-b)(a+b)可表示为“爱我中华”
    故选C.
    本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力.
    6、A
    【解析】
    连接BD、ND,由勾股定理得可得BD=4,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.
    【详解】
    连接BD、ND,
    由勾股定理得,BD==4,
    ∵点E、F分别为DM、MN的中点,
    ∴EF=DN,
    当DN最长时,EF长度的最大,
    ∴当点N与点B重合时,DN最长,
    ∴EF长度的最大值为BD=2,
    故选A.
    本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.
    7、B
    【解析】
    由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.
    【详解】
    解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,
    ∴∠DAB=90°,AD=AB,
    ∴∠ABD=45°,
    ∵△EFG是△ABC沿CB方向平移得到,
    ∴AB∥EF,
    ∴∠BDF=∠ABD=45°;
    故选:B
    此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.
    8、B
    【解析】
    根据坐标系中关于原点对称的点的坐标特征:原坐标点为,关于原点对称:横纵坐标值都变为原值的相反数,即对称点为可得答案.
    【详解】
    解:关于原点对称的点的坐标特征:横纵坐标值都变为原值的相反数,所以点有关于原点O的对称点Q的坐标为(-2,-1).
    故选:B
    本题考查了对称与坐标.设原坐标点为,坐标系中关于对称的问题分为三类:1.关于轴对称:横坐标值不变仍旧为,纵坐标值变为,即对称点为;2.关于轴对称:纵坐标值不变仍旧为,横坐标值变为即对称点为;3.关于原点对称:横纵坐标值都变为原值的相反数,即对称点为.熟练掌握变化规律是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、24
    【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,
    ∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.
    10、1
    【解析】
    直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
    【详解】
    由题意可得:AB=100m,∠A=30°,
    则BC=AB=1(m).
    故答案为:1.
    此题主要考查了解直角三角形的应用,正确得出BC与AB的数量关系是解题关键.
    11、
    【解析】
    先从特殊得到一般探究规律后,利用规律解决问题即可;
    【详解】
    ∵直线l:y=x-与x轴交于点B1
    ∴B1(1,0),OB1=1,△OA1B1的边长为1;
    ∵直线y=x-与x轴的夹角为30°,∠A1B1O=60°,
    ∴∠A1B1B2=90°,
    ∵∠A1B2B1=30°,
    ∴A1B2=2A1B1=2,△A2B3A3的边长是2,
    同法可得:A2B3=4,△A2B3A3的边长是22;
    由此可得,△AnBn+1An+1的边长是2n,
    ∴△A2018B2019A2019的边长是1.
    故答案为1.
    考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得△AnBn+1An+1的边长是2n.
    12、
    【解析】
    先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.
    【详解】
    解:
    为整数

    故答案为:1.
    本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出的取值范围是解此题的关键.
    13、8
    【解析】
    根据多边形内角和公式可知n边形的内角和为(n-2)·180º,n边形的外角和为360,再根据n边形的每个内角都等于其外角的3倍列出关于n的方程,求出n的值即可.
    【详解】
    解:∵n边形的内角和为(n-2)·180º,外角和为360,n边形的每个内角都等于其外角的3倍,
    ∴(n-2)·180º =360×3,
    解得:n=8.
    故答案为:8.
    本题考查的是多边形的内角与外角的关系的应用,明确多边形一个内角与外角互补和外角和的特征是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    首先判断出四边形OCED是平行四边形,而四边形ABCD是矩形,由OC、OD是矩形对角线的一半,知OC=OD,从而得出四边形OCED是菱形.
    【详解】
    证明:∵DE∥AC,CE∥DB,
    ∴四边形OCED是平行四边形,
    又∵四边形ABCD是矩形,
    ∴AC=BD,OC=OA=AC,OB=OD=BD,
    ∴OC=OD,
    ∴平行四边形OCED是菱形(一组邻边相等的平行四边形是菱形).
    此题主要考查了菱形的判定,关键是掌握菱形的判定方法:
    ①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);
    ②四条边都相等的四边形是菱形.
    ③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
    15、(1)甲:8.5,乙:8.5;(2)应派甲去参加比赛,理由见解析.
    【解析】
    (1)根据平均数的公式:平均数=所有数之和再除以数的个数;
    (2)根据方差公式计算即可.
    【详解】
    解:(1)甲、乙两人射击成绩的平均成绩分别为:
    甲=,
    乙=;
    (2)甲=,
    乙=,
    所以甲同学的射击成绩比较稳定,应派甲去参加比赛.
    本题考查平均数、方差的定义:方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数反映了一组数据的集中程度,求平均数的方法是所有数之和再除以数的个数;方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.
    16、(1)详见解析;(1)结论①不成立,结论②成立,理由详见解析.
    【解析】
    (1)①利用正方形的性质判断出△BOM≌△CON,利用面积和差即可得出结论;
    ②先得出OM=ON,BM=CN,再用勾股定理即可得出结论;
    (1)同(1)的方法即可得出结论.
    【详解】
    解:(1)①∵正方形ABCD的对角线相交于O,
    ∴S△BOC=S正方形ABCD,OB=OC,∠BOC=90°,∠OBM=∠OCN,
    ∵四边形OEFG是正方形,
    ∴∠MON=90°,
    ∴∠BOC﹣∠MOC=∠MON﹣∠MOC,
    ∴∠BOM=∠COM,
    ∴△BOM≌△CON,
    ∴S△BOM=S△CON,
    ∴S△OMC+S△ONC=S△OMC+S△BOM=S正方形ABCD;
    ②由①知,△BOM≌△CON,
    ∴OM=ON,BM=CN,
    在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,
    在Rt△MON中,MN1=OM1+ON1=1OM1,
    ∴BM1+CM1=1OM1;
    (1)结论①不成立,
    理由:∵正方形ABCD的对角线相交于O,
    ∴S△BOC=S正方形ABCD,OB=BD,OC=AC,AC=BD,AC⊥BD,∠ABC=∠BCD=90°,AC平分∠BCD,BD平分∠ABC,
    ∴OB=OC,∠BOC=90°,∠OBC=∠OCD=45°,
    ∴∠OBM=∠OCN=135°,
    ∵四边形OEFG是正方形,
    ∴∠MON=90°,
    ∴∠BOM=∠CON,
    ∴△BOM≌△CON,
    ∴S△BOM=S△CON,
    ∴S△OMC﹣S△BOM=S△OMC﹣S△CON=S△BOC=S正方形ABCD,
    ∴结论①不成立;
    结论②成立,理由:
    如图(1)
    连接MN,∵△BOM≌△CON,
    ∴OM=ON,BM=CN,
    在Rt△MCN中,MN1=CM1+CN1=CM1+BM1,
    在Rt△MON中,MN1=OM1+ON1=1OM1,
    ∴BM1+CM1=1OM1,
    ∴结论②成立.
    本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.
    17、(1);(2)
    【解析】
    (1)根据待定系数法即可解决;
    (2)观察图像即可得出答案.
    【详解】
    解:(1)∵图像经过点A
    ∴当时,

    ∵图像经过点且与轴交于点

    解得:
    所以这个一次函数解析式为
    (2)∵一次函数与正比例函数相交于交点,
    观察图像可知,当时,,
    ∴答案为.
    此题主要考查了待定系数法求一次函数、全等三角形的判定和性质、勾股定理等知识,学会分类讨论的数学思想是正确解题的关键.
    18、(1)G(0,4-);(2);(3).
    【解析】
    1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出 ,那么OG=OA-AG=4-,于是G(0,4-);
    (2)先在Rt△AGF中,由 ,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BF tan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.
    【详解】
    解:(1)∵F(1,4),B(3,4),
    ∴AF=1,BF=2,
    由折叠的性质得:GF=BF=2,
    在Rt△AGF中,由勾股定理得,
    ∵B(3,4),
    ∴OA=4,
    ∴OG=4-,
    ∴G(0,4-);
    (2)在Rt△AGF中,
    ∵ ,
    ∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,
    在Rt△BFE中,
    ∵BE=BFtan60°=2,
    .CE=4-2,
    .E(3,4-2).
    设直线EF的表达式为y=kx+b,
    ∵E(3,4-2),F(1,4),
    ∴ 解得
    ∴ ;
    (3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:
    ①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.
    过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.
    ∵GN1∥EF,直线EF的解析式为
    ∴直线GN1的解析式为,
    当y=0时, .
    ∵GFM1N1是平行四边形,且G(0,4-),F(1,4),N1( ,0),
    ∴M,( ,);
    ②FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.
    ∵GFN2M2为平行四边形,
    ∴GN₂与FM2互相平分.
    ∴G(0,4-),N2点纵坐标为0
    ∴GN:中点的纵坐标为 ,
    设GN₂中点的坐标为(x,).
    ∵GN2中点与FM2中点重合,

    ∴x=
    ∵.GN2的中点的坐标为(),
    .∴N2点的坐标为(,0).
    ∵GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),
    ∴M2();
    ③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.
    ∵GFN3M3为平行四边形,.
    ∴GN3与FM3互相平分.
    ∵G(0,4-),N2点横坐标为0,
    .∴GN3中点的横坐标为0,
    ∴F与M3的横坐标互为相反数,
    ∴M3的横坐标为-1,
    当x=-1时,y=,
    ∴M3(-1,4+2);
    ④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.
    过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4
    ∵G(0,4-),F(1,4),
    ∴FG中点坐标为(),
    ∵M4N4的中点与FG的中点重合,且N4的纵坐标为0,
    .∴M4的纵坐标为8-.
    5-45解方程 ,得
    ∴M4().
    综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为: 。
    本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4,8)
    【解析】
    由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x +(x-5)=25,解得x=4,即可求得D的坐标.
    【详解】
    由直线y=−x+10可知:B(0,10),
    ∴OB=10,
    ∵C是OB的中点,
    ∴C(0,5),OC=5,
    ∵CD=OC,
    ∴CD=5,
    ∵D是线段AB上一点,
    ∴设D(x,-x+10),
    ∴CD=

    解得x =4,x =0(舍去)
    ∴D(4,8),
    故答案为:(4,8)
    此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算
    20、1.
    【解析】
    试题解析:∵原二次根式有意义,
    ∴x-3≥0,3-x≥0,
    ∴x=3,y=4,
    ∴x+y=1.
    考点:二次根式有意义的条件.
    21、
    【解析】
    根据二次根式有意义的条件:被开方数为非负数求解即可.
    【详解】
    解:代数式有意义,

    解得:.
    故答案为:.
    本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.
    22、.
    【解析】
    首先提取公因式,进而利用完全平方公式分解因式即可.
    【详解】
    .
    故答案为:.
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    23、1<x≤2
    【解析】
    解:,
    解不等式①,得x>1.
    解不等式②,得x≤2,
    故不等式组的解集为1<x≤2.
    故答案为1<x≤2.
    二、解答题(本大题共3个小题,共30分)
    24、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.
    【解析】
    (1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
    【详解】
    (1)∵一次函数的图像经过点A(-1,0),
    ∴-2+b=0,
    解得:b=2,
    ∵点B(m,4)在一次函数y=2x+2上,
    ∴4=2m+2,
    解得:m=1,
    ∵B(1,4)在反比例函数图象上,
    ∴k1=4.
    (2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
    ∵A(-1,0),B(1,4),
    ∴AF=2,BF=4,
    ∴∠GCB+∠CBG=90°,
    ∵四边形ABCD是正方形,
    ∴∠ABC=90°,
    ∴∠ABF+∠CBG=90°,
    ∴∠GCB=∠ABF,
    又∵BC=AB,∠AFB=∠CGB=90°,
    ∴△CBG≌△BAF,
    ∴BG=AF=2,CG=BF=4,
    ∴GF=6,
    ∵在AB的左侧作正方形ABCD,
    ∴C点坐标为(-3,6).
    (3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
    ∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
    ∵线段A1B1的中点为点E,
    ∴E(n,2),
    ∵点和点E同时落在反比例函数的图像上,
    ∴k2=2n=6(-3+n)
    解得:n=.
    本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.
    25、(1);(2)的值为.
    【解析】
    (1)设直线AB所对应的函数表达式为.把点和点.代入,用待定系数法求解即可;
    (2)把代入(1)中求得的解析式即可求出m的值.
    【详解】
    (1)直线经过点和点,
    解得
    直线所对应的函数表达式为.
    (2)当时,.
    的值为.
    本题考查了待定系数法求函数解析式及一次函数图像上点的坐标特征,熟练掌握待定系数法是解答本题的关键.
    26、(1);(2),,;(3)最小值是.
    【解析】
    (1)根据两点之间的距离公式即可得到答案;
    (2)根据表示点与点之间的距离,可以得到A、B两点的坐标;
    (3)根据两点之间的距离公式,再结合图形,通过化简可以得到答案;
    【详解】
    解:(1)根据两点之间的距离公式得:,
    故答案为:.
    (2)根据表示点与点之间的距离,
    ∴表示点和点之间的距离,

    故答案为:b,-6,1.
    (3)解:
    如图1,表示的长,
    根据两点之间线段最短知
    如图2,
    ∴的最小值是.
    本题考查了坐标平面内两点之间的距离公式,以及平面内两点之间的最短距离,解题的关键是注意审题,会用数形结合的解题方法.
    题号





    总分
    得分
    批阅人

    相关试卷

    浙江省宁波市国际学校2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】:

    这是一份浙江省宁波市国际学校2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,四象限D.当x=时,y=1,解答题等内容,欢迎下载使用。

    2023-2024学年浙江省宁波市宁波华茂国际学校数学九上期末统考试题含答案:

    这是一份2023-2024学年浙江省宁波市宁波华茂国际学校数学九上期末统考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,关于的方程的根的情况,正确的是等内容,欢迎下载使用。

    2023-2024学年浙江省宁波市宁波华茂国际学校八年级数学第一学期期末综合测试试题含答案:

    这是一份2023-2024学年浙江省宁波市宁波华茂国际学校八年级数学第一学期期末综合测试试题含答案,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map