浙江省杭州市西溪中学2024年数学九上开学质量跟踪监视模拟试题【含答案】
展开
这是一份浙江省杭州市西溪中学2024年数学九上开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图①,,点在线段上,且满足.如图②,以图①中的,长为边建构矩形,以长为边建构正方形,则矩形的面积为( )
A.B.C.D.
2、(4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90˚,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
A.6B.5C.4D.3
3、(4分)如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是( )
A.B.C.D.
4、(4分)方程x(x-2)=0的根是( )
A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=-2
5、(4分)已知△ABC的边长分别为5,7,8,则△ABC的面积是( )
A.20B.10C.10D.28
6、(4分)如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是( )
A.当销售量为4台时,该公司赢利4万元B.当销售量多于4台时,该公司才开始赢利
C.当销售量为2台时,该公司亏本1万元D.当销售量为6台时,该公司赢利1万元
7、(4分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是( )
A.k≤﹣4B.k<﹣4C.k≤4D.k<4
8、(4分)如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为( )
A. B.
C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
10、(4分)正比例函数y=kx的图象与直线y=﹣x+1交于点P(a,2),则k的值是_____.
11、(4分)将直线y=2x-3平移,使之经过点(1,4),则平移后的直线是____.
12、(4分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.
13、(4分)若点在轴上,则点的坐标为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
解方程:
15、(8分)在平面直角坐标系中,设两数 (, 是常数,).若函数的图象过,且.
(1)求的值:
(2)将函数的图象向上平移个单位,平移后的函数图象与函数的图象交于直线上的同一点,求的值;
(3)已知点 (为常数)在函数的图象上,关于轴的对称点为,函数的图象经过点,当时,求的取值范围.
16、(8分)计算:
(1)
(2)
17、(10分)一条笔直跑道上的A,B两处相距500米,甲从A处,乙从B处,两人同时相向匀速而跑,直到乙到达A处时停止,且甲的速度比乙大.甲、乙到A处的距离(米)与跑动时间(秒)的函数关系如图14所示.
(1)若点M的坐标(100,0),求乙从B处跑到A处的过程中与的函数解析式;
(2)若两人之间的距离不超过200米的时间持续了40秒.
①当时,两人相距200米,请在图14中画出P(,0).保留画图痕迹,并写出画图步骤;
②请判断起跑后分钟,两人之间的距离能否超过420米,并说明理由.
18、(10分)如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求BC的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
20、(4分)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______
21、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
22、(4分)如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.
23、(4分)已知为分式方程,有增根,则_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.
(1)如图1,连接DE,AF.若DE⊥AF,求t的值;
(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?
25、(10分)如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.
(1)求点C的坐标及直线BC的函数表达式;
(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.
①若∠BDE=45°,求BDE的面积;
②在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.
26、(12分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用黄金比进行计算即可.
【详解】
解:由得,
AC=AB=×2=-1,BC=AB=×2=3-,
因为四边形CBDE为正方形,所以EC=BC,
AE=AC-CE=AC-BC=(-1)-(3-)=2-4,
矩形AEDF的面积:AE•DE=(2-4)×(3-)=10-1.
故选C.
本题考查黄金分割的意义,熟练利用黄金比计算是解题的关键.
2、C
【解析】
设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】
解:设BN=x,由折叠的性质可得DN=AN=9-x,
∵D是BC的中点,
∴BD=3,
在Rt△NBD中,x2+32=(9-x)2,
解得x=1.
即BN=1.
故选:C.
此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.
3、B
【解析】
函数y=ax+b和y=kx的图象交于点P(−4,−2),
即x=−4,y=−2同时满足两个一次函数的解析式。
所以关于x,y的方程组的解是: x= - 4 , y= - 2.
故选B.
点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
4、C
【解析】
试题分析:∵x(x-1)= 0
∴x=0或x-1=0,
解得:x1=0,x1=1.
故选C.
考点: 解一元二次方程-因式分解法.
5、C
【解析】
过A作AD⊥BC于D,根据勾股定理列方程得到BD,然后根据三角形的面积公式即可得到结论.
【详解】
如图,
∵AB=5,AC=7,BC=8,
过A作AD⊥BC于D,
∴AB2-BD2=AC2-CD2=AD2,
∴52-BD2=72-(8-BD)2,
解得:BD=,
∴AD=,
∴△ABC的面积=10,
故选C.
本题考查了勾股定理,三角形的面积的计算,熟练掌握勾股定理是解题的关键.
6、A
【解析】
利用图象交点得出公司盈利以及公司亏损情况.
【详解】
解:A、当销售量为4台时,该公司赢利0万元,错误;
B、当销售量多于4台时,该公司才开始赢利,正确;
C、当销售量为2台时,该公司亏本1万元,正确;
D、当销售量为6台时,该公司赢利1万元,正确;
故选A.
此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.
7、C
【解析】
根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.
【详解】
根据题意得△=12﹣1k≥0,
解得k≤1.
故选C.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如
下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;
当△<0时,方程无实数根.
8、C
【解析】
根据天平知2<A<3,然后观察数轴,只有C符合题意,故选C
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°
【解析】
根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
【详解】
根据旋转的性质,可得:AB=AD,∠BAD=100°,
∴∠B=∠ADB=×(180°−100°)=40°.
故填:40°.
本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
10、-1
【解析】
将点P的坐标代入两个函数表达式即可求解.
【详解】
解:将点P的坐标代入两个函数表达式得:
,
解得:k=-1.
故答案为:-1.
本题考查的是直线交点的问题,只需要把交点坐标代入两个函数表达式即可求解.
11、y=2x+2
【解析】
【分析】先由平移推出x的系数是2,可设直线解析式是y=2x+k,把点(1,4)代入可得.
【详解】由已知可设直线解析式是y=2x+k,
因为,直线经过点(1,4),
所以,4=2+k
所以,k=2
所以,y=2x+2
故答案为y=2x+2
【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
12、第三象限
【解析】分析:
根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.
详解:
∵直线y=kx+b经过第一、三、四象限,
∴k>0,b
相关试卷
这是一份浙江省杭州市临安市2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省杭州市景成实验学校2024年九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。