年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    浙江省杭州市公益中学2024年九年级数学第一学期开学综合测试试题【含答案】

    浙江省杭州市公益中学2024年九年级数学第一学期开学综合测试试题【含答案】第1页
    浙江省杭州市公益中学2024年九年级数学第一学期开学综合测试试题【含答案】第2页
    浙江省杭州市公益中学2024年九年级数学第一学期开学综合测试试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省杭州市公益中学2024年九年级数学第一学期开学综合测试试题【含答案】

    展开

    这是一份浙江省杭州市公益中学2024年九年级数学第一学期开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列各点中,位于第四象限的点是( )
    A.(3,4)B.(3,4)C.(3,4)D.(3,4)
    2、(4分)下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )
    A.B.C..D.
    3、(4分)不等式组的解集是
    A.x≥8B.x>2C.0<x<2D.2<x≤8
    4、(4分)在端午节到来之前,学校食堂推荐粽子专卖店的号三种粽子,对全校师生爱吃哪种粽子作调查,以决定最终的采购,下面的统计量中最值得关注的是( )
    A.方差B.平均数C.众数D.中位数
    5、(4分)下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的( )
    A.5,12,13B.3,4,5C.6,8,10D.2,3,4
    6、(4分)如图,四边形ABCD是矩形,连接BD,,延长BC到E使CE=BD,连接AE,则的度数为( )
    A.B.C.D.
    7、(4分)计算×的结果是( )
    A.B.8C.4D.±4
    8、(4分)在平面直角坐标系中,点与点关于原点对称,则的值为( )
    A.B.C.1D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .
    10、(4分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________________.
    11、(4分)若数据,,1,的平均数为0,则__________.
    12、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
    13、(4分)频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题.
    (1)该班共有 名学生;
    (2)在图(1)中,将表示“步行”的部分补充完整;
    (3)扇形图中表示骑车部分所占扇形的圆心角是 .
    (4)如果小明所在年级共计800人,请你根据样本数据,估计一下该年级步行上学的学生人数是多少?
    15、(8分)已知:如图,在ABCD中,延长线AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.
    16、(8分)数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?
    问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.
    探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?
    第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.
    第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.
    第三类:选正六边形.(仿照上述方法,写出探究过程及结论)
    探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?
    第四类:选正三角形和正方形
    在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程
    60x+90y=360
    整理,得2x+3y=1.
    我们可以找到唯一组适合方程的正整数解为.
    镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌
    第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)
    第六类:选正方形和正六边形,(不写探究过程,只写出结论)
    探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?
    第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论),
    17、(10分)如图所示,直线y=-x+8与x轴、y轴分别相交于点A,B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.
    求:(1)点B′的坐标;
    (2)直线AM所对应的函数表达式.
    18、(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
    根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
    (1)这6名选手笔试成绩的中位数是________分,众数是________分;
    (2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
    (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是______米/秒.
    20、(4分)当x______时,分式有意义.
    21、(4分)已知点,,直线与线段有交点,则的取值范围是______.
    22、(4分)如图,在矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的点E处,折痕的一端点G在边BC上,BG=1.
    如图1,当折痕的另一端点F在AB边上时,EFG的面积为_____;
    如图2,当折痕的另一端点F在AD边上时,折痕GF的长为_____.
    23、(4分)如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简再求值:,再从0,﹣1,2中选一个数作为a的值代入求值.
    25、(10分)已知:如图,在等腰梯形中,,,为的中点,设,.
    (1)填空:________;________;________;(用,的式子表示)
    (2)在图中求作.(不要求写出作法,只需写出结论即可)
    26、(12分)小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.
    (1)图中m=_____,n=_____;(直接写出结果)
    (2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.
    【详解】
    ∵第四象限内点的横坐标大于0,纵坐标小于0,
    ∴(3,4) 位于第四象限.
    故选A.
    本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
    2、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A. 是轴对称图形,不是中心对称图形。故选项错误;
    B. 是轴对称图形,不是中心对称图形。故选项错误;
    C. 不是轴对称图形,也不是中心对称图形。故选项错误;
    D. 是轴对称图形,也是中心对称图形。故选项正确。
    故选D.
    此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念
    3、D
    【解析】
    试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
    .故选D.
    4、C
    【解析】
    学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.
    【详解】
    解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.
    故选:C.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    5、D
    【解析】
    欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、52+122=132,能构成直角三角形,故不符合题意;
    B、32+42=52,能构成直角三角形,故不符合题意;
    C、62+82=102,能构成直角三角形,故不符合题意;
    D、22+32≠42,不能构成直角三角形,故符合题意.
    故选:D.
    本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.
    6、A
    【解析】
    如图,连接AC.只要证明CE=CA,推出∠E=∠CAE,求出∠ACE即可解决问题.
    【详解】
    如图,连接AC.
    ∵四边形ABCD是矩形,∴AC=BD.
    ∵EC=BD,∴AC=CE,∴∠AEB=∠CAE,易证∠ACB=∠ADB=30°.
    ∵∠ACB=∠AEB+∠CAE,∴∠AEB=∠CAE=15°.
    故选A.
    本题考查了矩形的性质、等腰三角形的判定和性质,三角形的外角的性质等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题.
    7、C
    【解析】
    根据二次根式乘法法则进行计算即可.
    【详解】
    原式=
    =
    =4,
    故选C.
    本题考查了二次根式的乘法,正确把握二次根式乘法的运算法则是解题的关键.
    8、C
    【解析】
    直接利用关于原点对称点的性质得出a,b的值,进而得出答案
    【详解】
    解:点与点关于原点对称,
    ,,

    故选:.
    此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    试题分析:画树状图为:
    共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为.
    考点:列表法与树状图法.
    10、 .
    【解析】
    由题意得OA=OA1=2,
    ∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,
    ∴B1(2,0),B2(6,0),B3(14,0)…,
    2=22﹣2,6=23﹣2,14=24﹣2,…
    ∴Bn的横坐标为,
    故答案为:.
    11、1
    【解析】
    根据平均数的公式列式计算即可.
    【详解】
    解:=0,
    得a=1,
    故答案为:1.
    本题主要考查了平均数的计算,要熟练掌握方法.
    12、x1<x1
    【解析】
    由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
    【详解】
    ∵y=(-1-a1)x+1,k=-1-a1<0,
    ∴y随着x的增大而减小,
    ∵1>-1,
    ∴x1<x1.
    故答案为:x1<x1
    本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
    13、1
    【解析】
    根据“频数:组距=2且组距为3”可得答案.
    【详解】
    根据题意知,该小组的频数为2×3=1.
    故答案为:1.
    本题考查了频数分布直方图,解题的关键是根据题意得出频数:组距=2.
    三、解答题(本大题共5个小题,共48分)
    14、(1)50;(2)见解析;(3)108°;)(4)160.
    【解析】
    (1)根据乘车的人数是25,所占的百分比是50%,即可求得总人数;
    (2)利用总人数乘以步行对应的百分比即可求得步行的人数,从而补全统计图;
    (3)根据三部分百分比的和是1求得“骑车”对应的百分比,再乘以360°可得答案;
    (4)利用总人数800乘以步行对应的百分比即可.
    【详解】
    解:(1)该班总人数是:25÷50%=50(人),
    故答案为:50;
    (2)步行的人数是:50×20%=10(人).

    (3)“骑车”部分所对应的百分比是:1﹣50%﹣20%=30%,
    所以扇形图中表示骑车部分所占扇形的圆心角为360°×30%=108°,
    故答案为:108°;
    (4)估计该年级步行上学的学生人数是:800×20%=160(人).
    本题考查的是条形统计图和扇形统计图的综合运用以及样本估计总计.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    15、证明见解析.
    【解析】
    试题分析:先由平行四边形的性质得出AB=CD,AB∥DC,再得出∠F=∠E,CF=AE,∠DCA=∠CAB,即可推出△COF≌△AOE,从而得到结论.
    试题解析:∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠F=∠E,∠DCA=∠CAB,∵AB=CD,FD=BE,∴CF=AE,在△COF和△AOE中,∵∠F=∠E,CF=AE,∠DCA=∠CAB,∴△COF≌△AOE,∴∴OE=OF.
    考点:平行四边形的性质;全等三角形的判定与性质.
    16、详见解析
    【解析】
    根据题意列出二元一次方程或三元一次方程,求出方程的正整数解,即可得出答案.
    【详解】
    解:第五类:设x个正三角形,y个正六边形,
    则60x+10y=360,
    x+2y=6,
    正整数解是或,
    即镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形(或4个正三角形和1个正六边形)的内角可以拼成一个周角,所以用正三角形和正六边形可以进行平面镶嵌;
    第六类:设x个正方形,y个正六边形,
    则90x+10y+=360,
    3x+4y=1,
    此方程没有正整数解,
    即镶嵌平面时,不能在一个顶点周围围绕着正方形和正六边形的内角拼成一个周角,所以不能用正方形和正六边形进行平面镶嵌;
    第七类:设x个正三角形,y个正方形,z个正六边形,
    则60x+90y+10z=360,
    2x+3y+4z=1,
    正整数解是,
    即镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形、1个正六边的内角可以拼成一个周角,所以用正三角形、正方形、正六边形可以进行平面镶嵌.
    本题考查了平面镶嵌和三元一次方程、二元一次方程的解等知识点,能求出每个方程的正整数解是解此题的关键.
    17、(1)点B′的坐标为(-4,0);(2)直线AM的函数表达式为y=-x+3.
    【解析】
    试题分析:(1)分别令y=0,x=0求出直线y=-x+8与x轴、y轴交点A、B的坐标.根据折叠性质可得进而求得点B'的坐标(2)设OM=m则B'M=BM=8-m
    根据勾股定理得;m2+42=(8-m)2,求出m=3,所以,M(0,3)设直线AM的解析式为y=kx+b,图象过(6,0)(0,3)代入可求得所以求出直线AM所对应的函数关系式.
    试题解析:(1)A(6,0),B(0,8)
    OA=6,OB="8" 根据勾股定理得:AB=10
    根据折叠性质可得
    A B'=AB=10,
    O B'=10-6=4
    B'(-4,0)
    (2)设OM=m则B'M=BM=8-m
    根据勾股定理得;
    m2+42=(8-m)2
    m=3
    M(0,3)
    设直线AM的解析式为y=kx+b
    解得:
    直线AM所对应的函数关系式
    考点:1.折叠问题;2.一次函数的解析式;3.一次函数图象与坐标轴交点.
    18、(1)84.5,84;
    (2)笔试成绩和面试成绩所占的百分比分别是40%,60%;
    (3)综合成绩排序前两名的人选是4号和2号选手.
    【解析】
    试题分析:(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;
    (2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;
    (3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.
    试题解析:(1)把这组数据从小到大排列为,80,84,84,85,90,92,
    最中间两个数的平均数是(84+85)÷2=84.5(分),
    则这6名选手笔试成绩的中位数是84.5,
    84出现了2次,出现的次数最多,
    则这6名选手笔试成绩的众数是84;
    (2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:

    解得:,
    笔试成绩和面试成绩各占的百分比是40%,60%;
    (3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),
    3号选手的综合成绩是84×0.4+86×0.6=85.2(分),
    4号选手的综合成绩是90×0.4+90×0.6=90(分),
    5号选手的综合成绩是84×0.4+80×0.6=81.6(分),
    6号选手的综合成绩是80×0.4+85×0.6=83(分),
    则综合成绩排序前两名人选是4号和2号.
    考点:1.加权平均数;2.中位数;3.众数;4.统计量的选择.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、20
    【解析】
    试题分析:设甲车的速度是m米/秒,乙车的速度是n米/秒,根据题意及图形特征即可列方程组求解.
    设甲车的速度是m米/秒,乙车的速度是n米/秒,由题意得
    ,解得
    则甲车的速度是20米/秒.
    考点:实际问题的函数图象,二元一次方程组的应用
    点评:此类问题是初中数学的重点,在中考中比较常见,一般难度不大,需熟练掌握.
    20、≠
    【解析】
    试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.
    由题意得,.
    考点:分式有意义的条件
    点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.
    21、﹣1≤m≤1.
    【解析】
    分别把点,代入直线,求得m的值,由此即可判定的取值范围.
    【详解】
    把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;
    把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,
    所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.
    故答案为:﹣1≤m≤1.
    本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.
    22、25 4
    【解析】
    (1)先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AF和EF的长,利用三角形的面积公式即可得出△EFG的面积;
    (2)首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长.
    【详解】
    解:(1)如图1过G作GH⊥AD
    在Rt△GHE中,GE=BG=1,GH=8
    所以,EH==6,
    设AF=x,则


    解得:x=3
    ∴AF=3,BF=EF=5
    故△EFG的面积为:×5×1=25;
    (2)如图2,过F作FK⊥BG于K
    ∵四边形ABCD是矩形
    ∴,
    ∴四边形BGEF是平行四边形
    由对称性知,BG=EG
    ∴四边形BGEF是菱形
    ∴BG=BF=1,AB=8,AF=6
    ∴KG=4
    ∴FG=.
    本题主要考查了翻折,勾股定理,矩形的性质,平行四边形和菱形的性质与判定,熟练掌握相关几何证明方法是解决本题的关键.
    23、1
    【解析】
    根据已知条件得到∠BAC=90°,AB=160米,AC=120米,由勾股定理即可得到结论.
    【详解】
    解:根据题意得:∠BAC=90°,AB=160米,AC=120米,
    在Rt△ABC中,BC= = =1米.
    故答案为:1.
    本题考查解直角三角形的应用-方向角问题,会识别方向角是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、.
    【解析】
    首先将分式进行化简,特别注意代入计算的数,不能使分式的分母为0.
    【详解】
    解:原式=

    = ,
    ∵a≠0,a2﹣1≠0,a2+a≠0,
    即a≠0,且a≠±1,
    ∴取a=2,
    原式=.
    本题主要考查分式化简求值,注意分式的分母不能为0
    25、(1);;(或);(2)图见解析, .
    【解析】
    (1)利用即可求出,首先根据已知可知,然后利用即可求出,利用即可求出;
    (2)首先根据已知可知,然后利用三角形法则即可求出.
    【详解】
    (1).
    ∵,,
    ∴,
    ∴.

    (2)作图如下:
    ∵,为的中点,
    ∴.
    ∵,
    ∴,
    ∴.
    本题主要考查向量的运算,掌握向量的运算法则是解题的关键.
    26、 (1)25,1;(2)小明回家骑行速度至少是0.2千米/分.
    【解析】
    (1)根据函数图象,先求出爸爸骑共享单车的速度以及匀速步行的速度,再求出返回途中爸爸从驿站到公园入口的时间,得到m的值;然后求出爸爸从公园入口到家的时间,进而得到n的值;
    (2)根据小明要在爸爸到家之前赶上得到不等关系:(n﹣爸爸从驿站到家的时间﹣小明到达驿站后逗留的10分钟)×小明回家骑行的速度≥驿站与家的距离,依此列出不等式,求解即可.
    【详解】
    (1)由题意,可得爸爸骑共享单车的速度为:=0.2(千米/分),
    爸爸匀速步行的速度为:=0.1(千米/分),
    返回途中爸爸从驿站到公园入口的时间为:=5(分钟),
    所以m=20+5=25;
    爸爸从公园入口到家的时间为:=20(分钟),
    所以n=25+20=1.
    故答案为25,1;
    (2)设小明回家骑行速度是x千米/分,
    根据题意,得(1﹣25﹣10)x≥2,
    解得x≥0.2.
    答:小明回家骑行速度至少是0.2千米/分.
    本题考查了一次函数的应用,一元一次不等式的应用,路程、速度与时间关系的应用,理解题意,从图象中获取有用信息是解题的关键.
    题号





    总分
    得分
    序号
    项目
    1
    2
    3
    4
    5
    6
    笔试成绩/分
    85
    92
    84
    90
    84
    80
    面试成绩/分
    90
    88
    86
    90
    80
    85

    相关试卷

    浙江省杭州市拱墅区公益中学2025届数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份浙江省杭州市拱墅区公益中学2025届数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】:

    这是一份浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届浙江省杭州公益中学数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份2025届浙江省杭州公益中学数学九年级第一学期开学综合测试模拟试题【含答案】,共27页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map