四川省遂宁市大英县2024年九上数学开学学业质量监测模拟试题【含答案】
展开这是一份四川省遂宁市大英县2024年九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如表记录了甲、乙、丙、丁四名学生最近几次数学综合测试成绩的平均数与方差:
根据表中数据,要从中选择一名成好且发挥稳定的同学参加竟赛,应该选择( )
A.甲B.乙C.丙D.丁
2、(4分)为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化米,则所列方程正确的是( )
A.B.C.D.
3、(4分)如图,菱形中,交于点,于点,连接,若,则的度数是( )
A.35°B.30°C.25°D.20°
4、(4分)点 A2, 3关于原点的对称点的坐标是( )
A. 2, 3 B.2, 3 C. 2, 3 D. 3, 2
5、(4分)等腰三角形的两边长分别为2、4,则它的周长为( )
A.8B.10C.8或10D.以上都不对
6、(4分)数据1、2、5、3、5、3、3的中位数是( )
A.1B.2C.3D.5
7、(4分)下列根式中属最简二次根式的是( )
A.B.C.D.
8、(4分)若的函数值随着的增大而增大,则的值可能是( )
A.0B.1C.-3D.-2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知的对角线,相交于点,是等边三角形,且,则的长为__________.
10、(4分)已知一次函数的图象经过第一、二、四象限,则的取值范围是_____.
11、(4分)若关于x的分式方程有增根,则a的值为_______
12、(4分)若关于x的分式方程无解. 则常数n的值是______.
13、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)求不等式组的整数解.
15、(8分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m-6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处
(1)求线段OD的长
(2)求点E的坐标
(3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐
16、(8分)已知关于x的方程x2﹣kx+k2+n=1有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=1.
(1)求证:n<1;
(2)试用k的代数式表示x1;
(3)当n=﹣3时,求k的值.
17、(10分)佳佳商场卖某种衣服每件的成本为元,据销售人员调查发现,每月该衣服的销售量(单位:件)与销售单价(单位:元/件)之间存在如图中线段所示的规律:
(1)求与之间的函数关系式,并写出的取值范围;
(2)若某月该商场销售这种衣服获得利润为元,求该月这种衣服的销售单价为每件多少元?
18、(10分)如图,边长为5的正方形OABC的顶点O在坐标原点处,点A,C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.
(1)求证:CE=EP.
(2)若点E的坐标为(3,0),在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若解分式方程产生增根,则m=_____.
20、(4分)在△ABC中,AB=8,BC=2 ,AC=6,D是AB的中点,则CD=_____.
21、(4分)如果向量,那么四边形的形状可以是_______________(写出一种情况即可)
22、(4分)如图,一棵大树在离地面4米高的处折断,树顶落在离树底端的5米远处,则大树折断前的高度是______米(结果保留根号).
23、(4分)分式方程有增根,则m=_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)因式分解:2
25、(10分)如图,在平面直角坐标系中,直线与轴,轴的交点分别为,直线交轴于点,两条直线的交点为,点是线段上的一个动点,过点作轴,交轴于点,连接.
求的面积;
在线段上是否存在一点,使四边形为矩形,若存在,求出点坐标:若不存在,请说明理由;
若四边形的面积为,设点的坐标为,求出关于的函数关系式,并写出自变量的取值范围.
26、(12分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平均数和方差的意义进行解答即可.
【详解】
从平均数看,成绩最好的是甲、丙同学,
从方差看,甲方差小,发挥最稳定,
所以要从中选择一名成绩好且发挥稳定的同学参加竞赛,应该选择甲,
故选A.
本题考查了平均数和方差,熟练掌握它们的意义是解题的关键.
2、A
【解析】
原计划每天绿化x米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.
【详解】
原计划每天绿化x米,则实际每天绿化(x+10)米,由题意得,
,
故选A.
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
3、C
【解析】
根据直角三角形的斜边中线性质可得,根据菱形性质可得,从而得到度数,再依据即可.
【详解】
解:∵四边形是菱形,,
∵O为BD中点,.
,
∴在中,,
.
.
故选:.
本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.
4、C
【解析】
根据直角坐标系中两个关于原点的对称点的坐标特点:“关于原点对称的点,横坐标、纵坐标都互为相反数”进行解答.
【详解】
由直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标都互为相反数,可得点P(2,−3)关于坐标原点的对称点的坐标为(−2,3),
故答案为:C.
本题考查了直角坐标系中关于原点对称的两点的坐标特征,牢牢掌握其坐标特征是解答本题的关键点.
5、B
【解析】
由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.
【详解】
解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;
②当4为腰时,符合题意,则周长是2+4+4=1.
故选:B.
本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.
6、C
【解析】
试题分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为1,2,1,1,1,5,5,∴中位数是按从小到大排列后第4个数为:1.故选C.
7、A
【解析】
试题分析:最简二次根式的是满足两个条件:1.被开方数中不含分母.2.被开方数中不能含有开得方的因数或因式.故符合条件的只有A.故选A
考点:最简二次根式
8、B
【解析】
先根据一次函数的增减性判断出k的符号,进而可得出结论.
【详解】
解:的函数值y随着x的增大而增大,
,
各选项中只有B选项的1符合题意.
故选:B.
本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据等边三角形的性质得出AD=OA=OD,利用平行四边形的性质和矩形的判定解答即可.
【详解】
解:∵△AOD是等边三角形,
∴AD=OA=OD=4,
∵四边形ABCD是平行四边形,
∴OA=AC,OD=BD,
∴AC=BD=8,
∴四边形ABCD是矩形,
在Rt△ABD中,,
故答案为:.
此题考查平行四边形的性质,关键是根据平行四边形的性质解答即可.
10、
【解析】
若函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,由此可以确定m的取值范围.
【详解】
解:∵直线y=(2m-3)x-m+5经过第一、二、四象限,
∴2m-3<0,-m+5>0,
故m<.
故答案是:m<.
考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
11、3
【解析】
先根据分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.
【详解】
解
去分母得2-(x-a)=7(x-5)
把x=5代入得2-(5-a)=0,解得a=3
故填:3.
此题主要考查分式方程的求解,解题的关键是熟知分式方程增根的定义.
12、1或
【解析】
分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解,使原方程的分母等于1.
【详解】
解:两边都乘(x−3),得3−2x+nx−2=−x+3,
解得x=,
n=1时,整式方程无解,分式方程无解;
∴当x=3时分母为1,方程无解,
即=3,
∴n=时,方程无解;
故答案为:1或.
本题考查了分式方程无解的条件,掌握知识点是解题关键.
13、<<
【解析】
分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
【详解】
解:当x=1时,=-2×1=-2;
当x=-1时,=-2×(-1)=2;
当x=-2时,=-2×(-2)=4;
∵-2<2<4
∴<<
故答案为:<<.
本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
三、解答题(本大题共5个小题,共48分)
14、-1、-1、0、1 、1.
【解析】
试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解.
试题解析:
解不等式①,得,
解不等式②,得,
∴不等式组的解集为.
∴不等式组的整数解为-1、-1、0、1、1.
考点:解一元一次不等式组.
15、(1)OD=3;(2)E点(,)(3)点N为(,0)或(,0)
【解析】
(1)根据非负性即可求出OA,OC;根据勾股定理得出OD长;
(2)由三角形面积求法可得,进而求出EG和DG,即可解答;
(3)由待定系数法求出DE的解析式,进而求出M点坐标,再利用平行四边形的性质解答即可.
【详解】
解:(1)∵线段OA,OC的长分别是m,n且满足
∴OA=m=6,OC=n=8;
设DE=x,由翻折的性质可得:OA=AE=6,OD=DE=x,DC=8-OD=8-x,
=10,
可得:EC=10-AE=10-6=4,
在Rt△DEC中,由勾股定理可得:DE2+EC2=DC2,
即x2+42=(8-x)2,
解得:x=3,
可得:DE=OD=3,
(2)过E作EG⊥OC,
在Rt△DEC中,
,
即
解得:EG=,
在Rt△DEG中,,
∴OG=3+=,
所以点E的坐标为(,),
(3)
设直线DE的解析式为:y=ax+c,把D(3,0),E(4.8,2.4)代入解析式可得:
,
解得:,
所以DE的解析式为:,
把y=6代入DE的解析式,可得:x=,
即AM=,
当以M、A、N、C为顶点的四边形是平行四边形时,
CN=AM=,
所以ON=8+=,ON'=8-=,
即存在点N,且点N的坐标为(,0)或(,0).
本题是一次函数综合题目,考查了非负性、用待定系数法求一次函数的解析式、勾股定理、平行四边形的性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过求一次函数的解析式和平行四边形的性质才能得出结果.
16、(3)证明见解析;(3)x3=3﹣k或x3=5﹣k.(3)k=3.
【解析】
(3)方程有两个不相等的实数根,则△>3,建立关于n,k的不等式,由此即可证得结论;(3)根据根与系数的关系,把x3+x3=k代入已知条件(3x3+x3)3﹣8(3x3+x3)+35=3,即可用k的代数式表示x3;(3)首先由(3)知n<﹣k3,又n=﹣3,求出k的范围.再把(3)中求得的关系式代入原方程,即可求出k的值.
【详解】
证明:(3)∵关于x的方程x3﹣kx+k3+n=3有两个不相等的实数根,
∴△=k3﹣4(k3+n)=﹣3k3﹣4n>3,
∴n<﹣k3.
又﹣k3≤3,
∴n<3.
解:(3)∵(3x3+x3)3﹣8(3x3+x3)+35=3,x3+x3=k,
∴(x3+x3+x3)3﹣8(x3+x3+x3)+35=3
∴(x3+k)3﹣8(x3+k)+35=3
∴[(x3+k)﹣3][(x3+k)﹣5]=3
∴x3+k=3或x3+k=5,
∴x3=3﹣k或x3=5﹣k.
(3)∵n<﹣k3,n=﹣3,
∴k3<4,即:﹣3<k<3.
原方程化为:x3﹣kx+k3﹣3=3,
把x3=3﹣k代入,得到k3﹣3k+3=3,
解得k3=3,k3=3(不合题意),
把x3=5﹣k代入,得到3k3﹣35k+33=3,△=﹣39<3,所以此时k不存在.
∴k=3.
本题综合考查了一元二次方程的解法、一元二次方程根的定义、一元二次方程根的判别式、一元二次方程根与系数的关系以及分类讨论的思想,熟练运用相关知识是解决问题的关键.
17、(1);(2)该月这种衣服的销售单价为每件元
【解析】
(1)根据点的坐标,利用待定系数法可求出每月销售量y与销售单价x之间的函数关系式;
(2)根据总利润=每千克的利润×月销售数量,即可得出关于x的一元二次方程,解之即可得出结论.
【详解】
解:(1)依题意可设,
由图像得:点都在的图像上,
,
与之间的函数关系式:,
由图象得,的取值范围:;
(2)依题意得:,
,
解得: (舍去);
∴该月这种衣服的销售单价为每件元.
本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.
18、(1)证明见解析;(2)存在点M的坐标为(0,2).
【解析】
分析:(1)在OC上截取OK=OE.连接EK,求出∠KCE=∠CEA,根据ASA推出△CKE≌△EAP,根据全等三角形的性质得出即可;
(2)过点B作BM∥PE交y轴于点M,根据ASA推出△BCM≌△COE,根据全等三角形的性质得出BM=CE,求出BM=EP.根据平行四边形的判定得出四边形BMEP是平行四边形,即可求出答案.
详解:(1)在OC上截取OK=OE.连接EK,如图1.
∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°.
∵AP为正方形OCBA的外角平分线,∴∠BAP=45°,∴∠EKC=∠PAE=135°,∴CK=EA.
∵EC⊥EP,∴∠CEF=∠COE=90°,
∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA.
在△CKE和△EAP中,∵ ,
∴△CKE≌△EAP,∴EC=EP;
(2)y轴上存在点M,使得四边形BMEP是平行四边形.
如图,过点B作BM∥PE交y轴于点M,连接BP,EM,如图2,
则∠CQB=∠CEP=90°,所以∠OCE=∠CBQ.
在△BCM和△COE中,∵,
∴△BCM≌△COE,∴BM=CE.
∵CE=EP,∴BM=EP.
∵BM∥EP,∴四边形BMEP是平行四边形.
∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.
故点M的坐标为(0,2).
点睛:本题考查了正方形的性质,全等三角形的性质和判定,平行四边形的性质和判定的应用,能灵活运用知识点进行推理是解答此题的关键,综合性比较强,难度偏大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-5
【解析】
试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x=-4,然后把分式方程化为整式方程x-1=m,解得m=-5
故答案为-5.
20、4
【解析】
先运用勾股定理逆定理得出△ABC是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可得出CD的长.
【详解】
解:在△ABC中,AB=8,BC=2,AC=6,
82=64=(2)2+62,
所以AB2=BC2+AC2,
所以△ABC是直角三角形,
∵D是AB的中点,
∴CD=AB=4,
故答案为:4
本题考查勾股定理逆定理,解题关键根据勾股定理逆定理及直角三角形斜边上的中线等于斜边的一半的性质解答.
21、平行四边形
【解析】
根据相等向量的定义和四边形的性质解答.
【详解】
如图:
∵=,
∴AD∥BC,且AD=BC,
∴四边形ABCD的形状可以是平行四边形.
故答案为:平行四边形.
此题考查了平面向量,掌握平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)是解题的关键.
22、()
【解析】
设出大树原来高度,用勾股定理建立方程求解即可.
【详解】
设这棵大树在折断之前的高度为x米,根据题意得:42+52=(x﹣4)2,∴x=4或x=40(舍),∴这棵大树在折断之前的高度为(4)米.
故答案为:().
本题是勾股定理的应用,解答本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.
23、1
【解析】
分式方程去分母得:x+x﹣1=m, 根据分式方程有增根得到x﹣1=0,即x=1,
将x=1代入整式方程得:1+1﹣1=m,
则m=1,
故答案为1.
二、解答题(本大题共3个小题,共30分)
24、2(a-b)2
【解析】
先提公因式在利用公式法进行因式分解即可.
【详解】
解:原式=2(a2-2ab+b2)
=2(a-b)2
本题考查的是因式分解,能够熟练运用多种方法进行因式分解是解题的关键.
25、(1)20;(2)存在;(3)S
【解析】
(1)想办法求出A、D、C三点坐标即可解决问题;
(2)存在.根据OB=PE=2,利用待定系数法即可解决问题;
(3)利用梯形的面积公式计算即可.
【详解】
解:在中,令,得
解得,点的坐标为
在中,令得
解得,点的坐标为
解方程组,得,点的坐标为
存在,四边形为矩形,
对于,当时,,点的坐标为
把代入,解得点的坐标是
本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.
26、1
【解析】
首先根据平行四边形的性质和对角线的和求得AO+OD的长,然后根据BC的长求得AD的长,从而求得△AOD的周长.
【详解】
解:如图:
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
∵AC+BD=28,
∴AO+OD=14,
∵AD=BC=12,
∴△AOD的周长=AO+OD+AD=14+12=1.
本题考查了平行四边形的性质,解题的关键是了解平行四边形的对角线互相平分,难度不大.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份四川省遂宁市大英县2024-2025学年九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省眉山市2025届九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省泸州市2024年数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。