年终活动
搜索
    上传资料 赚现金

    四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】

    四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】第1页
    四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】第2页
    四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份四川省广安市邻水县2025届数学九上开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )
    A.84分B.87.6分C.88分D.88.5分
    2、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
    \
    A.2 cmB.4 cmC. cmD.1 cm
    3、(4分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区 户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是( )
    A.极差是 B.众数是 C.中位数是 D.平均数是
    4、(4分)二次根式有意义的条件是
    A.B.C.D.
    5、(4分)下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )
    A.a=1、b=2、c=B.a=1.5、b=2、c=3
    C.a=6、b=8、c=10D.a=3、b=4、c=5
    6、(4分)随机抽取10名八年级同学调查每天使用零花钱的情况,结果如表,则这10名同学每天使用零花钱的中位数是
    A.2元B.3元C.4元D.5元
    7、(4分)下列式子中,属于最简二次根式的是( )
    A.B.C.D.
    8、(4分)把边长为3的正方形绕点A顺时针旋转45°得到正方形,边与交于点O,则四边形的周长是( )
    A.6B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
    10、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
    11、(4分)关于的一元二次方程x2+mx-6=0的一个根为2,则另一个根是 .
    12、(4分)如图,函数()和()的图象相交于点,则不等式的解集为_________.
    13、(4分)如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF ,求证:四边形AECF是菱形.
    15、(8分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,
    (1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.
    ①如图1,求证:BE=BF=3;
    ②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.
    (2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为 (直接写出结果).
    16、(8分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:
    请根据以上统计图中的信息解答下列问题.
    (1)植树3株的人数为 ;
    (2)扇形统计图中植树为1株的扇形圆心角的度数为 ;
    (3)该班同学植树株数的中位数是
    (4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识
    判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果
    17、(10分)已知BD是△ABC的角平分线,ED⊥BC,∠BAC=90°,∠C=30°.
    (1)求证:CE=BE;
    (2)若AD=3,求△ABC的面积.
    18、(10分)解方程:(1)(2x+1)2=(x-1)2;(2)x2+4x-7=0
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)表①给出了直线l1上部分(x,y)坐标值,表②给出了直线l2上部分点(x,y)坐标值,那么直线l1和直线l2的交点坐标为_______.
    20、(4分)如图,点,是的边,上的点,已知,,分别是,,中点,连接BE,FH,若BD=8,CE=6,,∠FGH=90°,则FH长为_______.
    21、(4分)已知不等式组的解集为,则的值是________.
    22、(4分)在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,方程(x+1)﹡3=0的解为_____.
    23、(4分)方程的根是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.
    (1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;
    (2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).
    ①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;
    ②当t=5时,CE=CF,请直接写出a的值.
    25、(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
    (1)乙队单独完成这项工程需要多少天?
    (2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
    26、(12分)某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.
    (1)求甲,乙两个公司每天分别修建地铁多少千米?
    (2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.
    ①请求出b与a的函数关系式及a的取值范围;
    ②设完成此项工程的工期为W天,请求出W的最小值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据加权平均数的计算方法进行计算即可得出答案.
    故选B.
    【详解】
    解:(分).
    本题考查了加权平均数.理解“权”的含义是解题的关键.
    2、A
    【解析】
    如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
    3、B
    【解析】
    试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:
    A、极差=14﹣7=7,结论正确,故本选项错误;
    B、众数为7,结论错误,故本选项正确;
    C、中位数为8.5,结论正确,故本选项错误;
    D、平均数是8,结论正确,故本选项错误.
    故选B.
    4、A
    【解析】
    根据:二次根式被开方数必须是非负数才有意义.
    【详解】
    由m-2≥0得,.
    故选A
    本题考核知识点:二次根式有意义条件. 解题关键点:熟记二次根式有意义条件.
    5、B
    【解析】
    “如果一个三角形的三条边长分别为a、b、c,且有,那么这个三角形是直角三角形.”
    【详解】
    解:A. 12+= 22; B. 1.52+22≠32;
    C. 62+82=102; D. 32+42=52.
    故选B.
    本题考核知识点:勾股定理逆定理.解题关键点:理解勾股定理逆定理的意义.
    6、B
    【解析】
    将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    【详解】
    解:共10名同学,中位数是第5和第6的平均数,故中位数为3,
    故选:.
    本题考查了中位数,正确理解中位数的意义是解题的关键.
    7、D
    【解析】
    分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    详解:A.被开方数含能开得尽方的因数或因式,故不符合题意;
    B. 被开方数含分母,故不符合题意;
    C.被开方数含分母,故不符合题意;
    D. 被开方数不含分母;被开方数不含能开得尽方的因数或因式,故符合题意;
    故选D.
    点睛:此题考查了最简二次根式:被开方数不含分母;被开方数不含能开得尽方的因数或因式,满足这两个条件的二次根式才是最简二次根式.
    8、B
    【解析】
    由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.
    【详解】
    连接BC′,
    ∵旋转角∠BAB′=45∘,∠BAD′=45°,
    ∴B在对角线AC′上,
    ∵B′C′=AB′=3,
    在Rt△AB′C′中,AC′= =3,
    ∴BC′=3−3,
    在等腰Rt△OBC′中,OB=BC′=3−3,
    在直角三角形OBC′中, OC′= (3−3)=6−3,
    ∴OD′=3−OC′=3−3,
    ∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3−3+3−3=6.
    故选:B.
    此题考查正方形的性质,旋转的性质,解题关键在于利用勾股定理的知识求出BC′的长
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
    【详解】
    延长AB至M,使BM=AE,连接FM,
    ∵四边形ABCD是菱形,∠ADC=120°
    ∴AB=AD,∠A=60°,
    ∵BM=AE,
    ∴AD=ME,
    ∵△DEF为等边三角形,
    ∴∠DAE=∠DFE=60°,DE=EF=FD,
    ∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
    ∴∠MEF=∠ADE,
    ∴△DAE≌EMF(SAS),
    ∴AE=MF,∠M=∠A=60°,
    又∵BM=AE,
    ∴△BMF是等边三角形,
    ∴BF=AE,
    ∵AE=t,CF=2t,
    ∴BC=CF+BF=2t+t=3t,
    ∵BC=4,
    ∴3t=4,
    ∴t=
    考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
    10、1.
    【解析】
    先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
    【详解】
    由题意得,
    ∵菱形ABCD
    ∴,AC⊥BD



    考点:本题考查的是菱形的性质
    解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
    11、-1
    【解析】
    试题分析:因为方程x2+mx-6=0的一个根为2,所以设方程另一个根x,由根与系数的关系可得:2x=-6,所以x=-1.
    考点:根与系数的关系
    12、
    【解析】
    写出直线在直线下方部分的的取值范围即可.
    【详解】
    解:由图可知,不等式的解集为;
    故答案为:.
    本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.
    13、2
    【解析】
    由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB= x,则AF=x ,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.
    【详解】
    由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.
    设AB= x,则AF=x ,AC=x+1.
    ∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.
    ∵ABCD是矩形,∴CD=AB=2.
    故答案为:2.
    本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    三、解答题(本大题共5个小题,共48分)
    14、答案见解析
    【解析】
    分析:由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.
    详解:∵O是AC的中点,且EF⊥AC,
    ∴AF=CF,AE=CE,OA=OC,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠AFO=∠CEO,
    在△AOF和△COE中,

    ∴△AOF≌△COE(AAS),
    ∴AF=CE,
    ∴AF=CF=CE=AE,
    ∴四边形AECF是菱形;
    点睛:此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.
    15、(1)①详见解析;②12;(2).
    【解析】
    (1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;
    ②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;
    (2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.
    【详解】
    解:(1)①∵四边形ABCD是正方形,
    ∴AB=BC=AD=6,∠BAD=∠BCD=90°,
    ∵点E是中点,
    ∴AE=AD=3,
    在Rt△ABE中,根据勾股定理得,BE==3,
    在△BAE和△BCF中,
    ∴△BAE≌△BCF(SAS),
    ∴BE=BF,
    ∴BE=BF=3;
    ②如图2,连接BD,
    在Rt△ABC中,AC=AB=6,
    ∴BD=6,
    ∵四边形ABCD是正方形,
    ∴AD∥BC,
    ∴△AEM∽△CMB,
    ∴,
    ∴,
    ∴AM=AC=2,
    同理:CN=2,
    ∴MN=AC﹣AM﹣CN=2,
    由①知,△ABE≌△CBF,
    ∴∠ABE=∠CBF,
    ∵AB=BC,∠BAM=∠BCN=45°,
    ∴△ABM≌△CBN,
    ∴BM=BN,
    ∵AC是正方形ABCD的对角线,
    ∴AB=AD,∠BAM=∠DAM=45°,
    ∵AM=AM,
    ∴△BAM≌△DAM,
    ∴BM=DM,
    同理:BN=DN,
    ∴BM=DM=DN=BN,
    ∴四边形BMDN是菱形,
    ∴S四边形BMDN=BD×MN=×6×2=12;
    (2)如图3,设DH=a,
    连接BD,
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,
    ∵DH⊥BH,
    ∴∠BHD=90°,
    ∴点B,C,D,H四点共圆,
    ∴∠DBH=∠DCH=22.5°,
    在BH上取一点G,使BG=DG,
    ∴∠DGH=2∠DBH=45°,
    ∴∠HDG=45°=∠HGD,
    ∴HG=HD=a,
    在Rt△DHG中,DG=HD=a,
    ∴BG=a,
    ∴BH=BG+HG=A+A=(+1)a,
    ∴.
    故答案为.
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.
    16、(1)12;(2)72°;(3)2;(1)小明的计算不正确,2.1.
    【解析】
    (1)根据植树2株的人数及其所占的百分比计算出总人数,然后分别减去植树1株,2株,1株,5株的人数即可得到植树3株的人数;
    (2)用360°乘以植树1株的人数所占的百分比即可得;
    (3)根据中位数的定义可先计算植树的总人数,然后写出即可;
    (1)根据平均数的定义判断计算即可.
    【详解】
    解:(1)植树3株的人数为:20÷10%﹣10﹣20﹣6﹣2=12;
    (2)扇形统计图中植树为1株的扇形圆心角的度数为:360°×=72°;
    (3)植树的总人数为:20÷10%=50,
    ∴该班同学植树株数的中位数是2;
    (1)小明的计算不正确,
    正确的计算为: =2.1.
    本题主要考查了扇形统计图和条形统计图、平均数、中位数的知识,根据题意读懂图形并正确计算是解题的关键.
    17、(1)见解析;(2)△ABC的面积=.
    【解析】
    (1)根据直角三角形的性质和角平分线的定义证出∠C=∠DBC,然后根据等角对等边即可证出DC=DB,然后利用三线合一即可得出结论;
    (2)利用30°所对的直角边是斜边的一半即可求出BD和AB,从而求出AC,然后根据三角形的面积公式计算即可.
    【详解】
    (1)证明:∵∠A=90°,∠C=30°,
    ∴∠ABC=60°,
    ∵BD平分∠ABC,
    ∴∠DBC=∠ABC=30°,
    ∴∠C=∠DBC,
    ∴DC=DB,
    ∵DE⊥BC,
    ∴EC=BE.
    (2)解:在Rt△ABD中,∵∠A=90°,AD=3,∠ABD=30°,
    ∴BD=2AD=6,AB==3,
    ∴DB=DC=6,
    ∴AC=9,
    ∴△ABC的面积=×=.
    此题考查的是直角三角形的性质、等腰三角形的判定及性质和勾股定理,掌握30°所对的直角边是斜边的一半、等角对等边、三线合一和利用勾股定理解直角三角形是解决此题的关键.
    18、 (1)x1=0,x2=-2;(2)x1=-2+,x2=-2-.
    【解析】
    分析:(1)用直接开平方法求解即可;(2)根据求根公式:计算即可.
    详解:(1)∵(2x+1)2=(x-1)2,
    ∴2x+1=x-1或2x+1=-(x-1),
    ∴2x-x=-1-1或2x+1=-x+1,
    ∴2x-x=--1或2x+1=-x+1,
    ∴x=-2或x=0,
    即x1=0,x2=-2;
    (2)x2+4x-7=0
    ∵a=1,b=4,c=-7,
    ∴x= ,
    ∴x1=-2+,x2=-2-.
    点睛:本题主要考查的知识点是一元二次方程的解法-直接开平方法和求根公式法.熟练掌握直接开平方法和求根公式法是解答本题的关键,本题属于一道基础题,难度适中.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(2,-1)
    【解析】
    【分析】通过观察直线l1上和l2上部分点的坐标值,会发现当x=2时,y的值都是-1,即两直线都经过点(2,-1),即交点.
    【详解】通过观察表格可知,直线l1和直线l2都经过点(2,-1),
    所以直线l1和直线l2交点坐标为(2,-1),
    故答案为:(2,-1)
    【点睛】本题考查了两直线相交的问题,仔细观察图表数据,判断出两直线的交点坐标是解题的关键.
    20、
    【解析】
    利用三角形中位线求得线段FG、GH;再利用勾股定理即可求出FH的长.
    【详解】
    解:∵,,分别是,,中点

    ∵∠FGH=90°
    ∴为直角三角形
    根据勾股定理得:
    故答案为:5
    本题考查了三角形中位线定理以及勾股定理,熟练掌握三角形中位线定理是解答本题的关键.
    21、
    【解析】
    根据不等式的解集求出a,b的值,即可求解.
    【详解】
    解得
    ∵解集为
    ∴=1,3+2b=-1,
    解得a=1,b=-2,
    ∴=2×(-3)=-6
    此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.
    22、x=2、-4
    【解析】
    先根据新定义得到,再移项得,然后利用直接开平方法求解.
    【详解】
    (x+1)﹡3=0,



    所以、.
    故答案为:、.
    本题考查了解一元二次方程-直接开平方法:如果方程化成的形式,那么可得,如果方程能化成()的形式,那么.
    23、,.
    【解析】
    方程变形得:x1+1x=0,即x(x+1)=0,
    可得x=0或x+1=0,
    解得:x1=0,x1=﹣1.
    故答案是:x1=0,x1=﹣1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)四边形OBDA是平行四边形,见解析;(2)①2+,②或或
    【解析】
    (1)作射线OC,截取CD=OC,然后由对角线互相平分的四边形是平行四边形进行可得到四边形的形状;
    (2)①由直线EF恰好平分四边形OBDA的面积可知直线EF必过C,接下来,证明△OEC≌△DFC,从而可求得DF的长度,于是得到BF=2,然后再由两点间的距离公式求得OB的长,从而可求得a的值;
    ②先求得点E的坐标,然后求得EC的长,从而得到CF1的长,然后依据勾股定理的逆定理证明∠OBA=90°,在△BCF1中,依据勾股定理可求得BF1的长,从而可求得a的值,设点F2的坐标(b,6),由CE=CF列出关于b的方程可求得点F2的坐标,从而可求得a的值,在Rt△CAF3中,取得AF3的长,从而求得点F运动的路程,于是可求得a的值.
    【详解】
    解:(1)如图所示:
    四边形OBDA是平行四边形.
    理由如下:∵点C为线段AB的中点,
    ∴CB=CA.
    ∵点D与原点O关于点C对称,
    ∴CO=CD.
    ∴四边形OBDA是平行四边形.
    (2)①如图2所示;
    ∵直线EF恰好平分四边形OBDA的面积,
    ∴直线EF必过C(9,3).
    ∵t=1,
    ∴OE=1.
    ∵BD∥OA,
    ∴∠COE=∠CDF.
    ∵在△OEC和△DFC中,
    ∴△OEC≌△DFC.
    ∴DF=OE=1.
    ∴BF=4-1=2.
    由两点间的距离公式可知OB==6.
    ∴1a=6+2.
    ∴a=2+.
    ②如图3所示:
    ∵当t=3时,OE=3,
    ∴点E的坐标(3,0).
    由两点间的距离公式可知EC==3.
    ∵CE=CF,
    ∴CF=3.
    由两点间的距离公式可知OB=BA=6,
    又∵OA=4.
    ∴△OBA为直角三角形.
    ∴∠OBA=90°.
    ①在直角△F1BC中,CF1=3,BC=3,
    ∴BF1=.
    ∴OF1=6-.
    ∴a=.
    ②设F2的坐标为(b,6).由两点间的距离公式可知=3.
    解得;b=3(舍去)或b=5.
    ∴BF2=5-6=6.
    ∴OB+BF2=6+6.
    ∴a=.
    ③∵BO∥AD,
    ∴∠BAD=∠OBA=90°.
    ∴AF3==.
    ∴DF3=6-.
    ∴OB+BD+DF3=6+4+6-=4-+4.
    ∴a=.
    综上所述a的值为或或.
    本题主要考查的是四边形的综合应用,解答本题主要应用了平行四边形的判定、全等三角形的性质和判定、勾股定理和勾股定理的逆定理的应用,两点间的距离公式求得F1B,F2D,F3A的长度是解题的关键.
    25、(1)乙队单独完成需2天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.
    【解析】
    (1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.
    (2)根据题意,分别求出三种情况的费用,然后把在工期内的情况进行比较即可.
    【详解】
    解:(1)设乙队单独完成需x天.
    根据题意,得:.
    解这个方程得:x=2.
    经检验,x=2是原方程的解.
    ∴乙队单独完成需2天.
    (2)设甲、乙合作完成需y天,则有,
    解得,y=36;
    ①甲单独完成需付工程款为:60×3.5=210(万元).
    ②乙单独完成超过计划天数不符题意,
    ③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).
    答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.
    本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    26、(1)甲公司每天修建地铁 千米,乙公司每天修建地铁千米;(2)①;②W最小值为440天
    【解析】
    (1)甲公司每天修千米,乙公司每天修千米,根据题意列分式方程解答即可;
    (2)①由题意得,再根据题意列不等式组即可求出的取值范围;
    ②写出与、之间的关系式,再根据一次函数的性质解答即可.
    【详解】
    解:(1)设甲公司每天修千米,乙公司每天修千米,根据题意得,
    ,解得,
    经检验,为原方程的根,
    ,,
    答:甲公司每天修建地铁千米,乙公司每天修建地铁千米;
    (2)①由题意得,,

    又,

    ②由题意得,
    ,即,

    随的增大而增大,
    又,
    时,最小值为440天.
    本题考查了一次函数的应用,一元一次不等式的应用,分式方程的应用,解题的关键是从实际问题中整理出数量关系并利用该数量关系求解.
    题号





    总分
    得分
    每天使用零花钱情况
    单位(元
    2
    3
    4
    5
    人数
    1
    5
    2
    2

    相关试卷

    四川省广安市广安友谊中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】:

    这是一份四川省广安市广安友谊中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省广安市代市中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份四川省广安市代市中学2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省广安市2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份四川省广安市2025届九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map