上海市浦东区第四教育署2024-2025学年数学九上开学复习检测模拟试题【含答案】
展开
这是一份上海市浦东区第四教育署2024-2025学年数学九上开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于的不等式组恰好有四个整数解,那么的取值范围是( )
A.B.C.D.
2、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为( )
A.10B.20
C.15D.25
3、(4分)下列式子从左到右变形错误的是( )
A.B.C.D.
4、(4分)关于一组数据:1,5,6,3,5,下列说法错误的是( )
A.平均数是4B.众数是5C.中位数是6D.方差是3.2
5、(4分)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( )
A.y=10x+30B.y=40xC.y=10+30xD.y=20x
6、(4分)已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是( )
A.m<B.m>C.m<2D.m>-2
7、(4分)如图,在△ABC中,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若∠BAD=45°,则∠B的度数为( )
A.75°B.65°C.55°D.45°
8、(4分)以下列数组为边长中,能构成直角三角形的是( )
A.6,7,8B.,,
C.1,1,D.,,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去…若点, ,则点的坐标为________.
10、(4分)如图,在平面直角坐标系中,已知点、、的坐标分别为,,.若点从点出发,沿轴正方向以每秒1个单位长度的速度向点移动,连接并延长到点,使,将线段绕点顺时针旋转得到线段,连接.若点在移动的过程中,使成为直角三角形,则点的坐标是__________.
11、(4分)如果关于x的方程(m+2)x=8无解,那么m的取值范围是_____.
12、(4分)关于x的方程=3有增根,则m的值为___________.
13、(4分)如图,正方形面积为,延长至点,使得,以为边在正方形另一侧作菱形,其中,依次延长类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点则四边形的面积为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分) “2018年某明星演唱会”于6月3日在某市奥体中心举办.小明去离家300的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有30分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小明骑车的时间比跑步的时间少用了5分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小明跑步的平均速度;
(2)如果小明在家取票和寻找“共享单车”共用了4分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
15、(8分)如图,在平面直角坐标系中,直线与直线相交于点 A .
(I)求直线与 x 轴的交点坐标,并在坐标系中标出点 A 及画出直线 的图象;
(II)若点P是直线在第一象限内的一点,过点P作 PQ//y 轴交直线 于点Q,△POQ 的面积等于60 ,试求点P 的横坐标.
16、(8分)当自变量取何值时,函数与的值相等?这个函数值是多少?
17、(10分)(1) [探索发现]正方形中,是对角线上的一个动点(与点不重合),过点作交线段于点.求证:
小玲想到的思路是:过点作于点于点,通过证明得到.请按小玲的思路写出证明过程
(2)[应用拓展]如图2,在的条件下,设正方形的边长为,过点作交于点.求的长.
18、(10分)已知一次函数,当时,,求它的解析式以及该直线与坐标轴的交点坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形中,其中一个内角为,且周长为,则较长对角线长为__________.
20、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
21、(4分)如图,点A是函数的图像上的一点,过点A作轴,垂足为点B,点C为x轴上的一点,连接AC,BC,若△ABC的面积为4,则K的值为_______
22、(4分)计算:(﹣)2=_____.
23、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简:(﹣1)÷,再0,1,2,﹣1中选择一个恰当的x值代入求值.
25、(10分)如图,直线y=x+与x轴相交于点B,与y轴相交于点A.
(1)求∠ABO的度数;
(2)过点A的直线l交x轴的正半轴于点C,且AB=AC,求直线的函数解析式.
26、(12分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.
(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;
(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.
求证:BF=AB+DF;
若AD=AB,试探索线段DF与FC的数量关系.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等式,可求得m的取值范围.
【详解】
解:
在中,
解不等式①可得x>m,
解不等式②可得x≤3,
由题意可知原不等式组有解,
∴原不等式组的解集为m<x≤3,
∵该不等式组恰好有四个整数解,
∴整数解为0,1,2,3,
∴-1≤m<0,
故选C.
本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.
2、C
【解析】
根据平行四边形的性质求解即可.
【详解】
∵四边形ABCD是平行四边形
∴
∵AC+BD=20
∴
∴△AOB的周长
故答案为:C.
本题考查了三角形的周长问题,掌握平行四边形的性质是解题的关键.
3、C
【解析】
根据分式的性质逐个判断即可.
【详解】
解: ,
故选:C.
本题主要考查分式的基本性质,分式的分子分母同时乘以一个不为0的数,不会改变分式的大小.
4、C
【解析】
解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;
B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;
C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;
D.这组数据的方差是: [(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;
故选C.
考点:方差;算术平均数;中位数;众数.
5、A
【解析】
根据师生的总费用,可得函数关系式.
【详解】
解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,
故选A.
本题考查了函数关系式,师生的总费用的等量关系是解题关键.
6、B
【解析】
分析:先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m-1>0,解不等式即可求解.
详解:∵当x1<x2时,有y1<y2
∴y随x的增大而增大
∴2m-1>0,
∴m>.
故选:B.
点睛:本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
7、A
【解析】
由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.
【详解】
解:由作法得MN垂直平分AC,
∴DA=DC,
∴∠DAC=∠C=30°,
∴∠BAC=∠BAD+∠DAC=45°+30°=75°,
∵∠B+∠C+∠BAC=180°,
∴∠B=180°-75°-30°=75°.
故选:A.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
8、D
【解析】
根据勾股定理的逆定理对四个选项进行逐一判断即可.
【详解】
解:A、由于62+72=85≠82=64,故本选项错误;
B、0.22+0.32=0.13≠0.52=0.25,故本选项错误;
C、由于12+12=2≠()2=3,故本选项错误;
D、由于()2+()2=()2=5,故本选项正确.
故选:D.
本题考查的是勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(1,2)
【解析】
先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.
【详解】
∵AO= ,BO=2,
∴AB= ,
∴OA+AB1+B1C2=6,
∴B2的横坐标为:6,且B2C2=2,
∴B4的横坐标为:2×6=12,
∴点B2018的横坐标为:2018÷2×6=1.
∴点B2018的纵坐标为:2.
∴点B2018的坐标为:(1,2),
故答案是:(1,2).
考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.
10、(5,1),(−1)
【解析】
当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:
①F为直角顶点,过F作FD⊥x轴于D,BP=6-t,DP=1OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t1-1t+5,那么PF1=(1CP)1=4(t1-1t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF1÷PD=t1-1t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t1-1t+5=6-t,即t= ;
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,那么BP=1OC=4,即OP=OB-BP=1,此时t=1.
【详解】
解:能;
①若F为直角顶点,过F作FD⊥x轴于D,则BP=6-t,DP=1OC=4,
在Rt△OCP中,OP=t-1,
由勾股定理易求得CP1=t1-1t+5,那
么PF1=(1CP)1=4(t1-1t+5);
在Rt△PFB中,FD⊥PB,
由射影定理可求得PB=PF1÷PD=t1-1t+5,
而PB的另一个表达式为:PB=6-t,
联立两式可得t1-1t+5=6-t,即t=,
P点坐标为(,0),
则F点坐标为:( −1);
②B为直角顶点,得到△PFB∽△CPO,且相似比为1,
那么BP=1OC=4,即OP=OB-BP=1,此时t=1,
P点坐标为(1,0).FD=1(t-1)=1,
则F点坐标为(5,1).
故答案是:(5,1),(−1).
此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.
11、
【解析】
根据一元一次方程无解,则m+1=0,即可解答.
【详解】
解:∵关于的方程无解,
∴m+1=0,
∴m=−1,
故答案为m=−1.
本题考查了一元一次方程的解,根据题意得出关于m的方程是解题关键.
12、m=-1.
【解析】
方程两边都乘以最简公分母,把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.
【详解】
方程两边都乘以(x−2)得,
∵分式方程有增根,
∴x−2=0,
解得x=2,
∴4−3+m=3(2−2),
解得
故答案为
考查分式方程的增根,增根就是使最简公分母等于0的未知数的值.
13、
【解析】
如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,首先利用正方形性质结合题意求出AD=CD=AG=DQ=1,然后进一步根据菱形性质得出DE=EF=DG=2,再后通过证明四边形NKQR是矩形得出QR=NK=,进一步可得,再延长NS交ML于点Z,利用全等三角形性质与判定证明四边形FHMN为正方形,最后进一步求解即可.
【详解】
如图所示,延长CD交FN于点P,过N作NK⊥CD于点K,延长FE交CD于点Q,交NS于点R,
∵ABCD为正方形,
∴∠CDG=∠GDK=90°,
∵正方形ABCD面积为1,
∴AD=CD=AG=DQ=1,
∴DG=CT=2,
∵四边形DEFG为菱形,
∴DE=EF=DG=2,
同理可得:CT=TN=2,
∵∠EFG=45°,
∴∠EDG=∠SCT=∠NTK=45°,
∵FE∥DG,CT∥SN,DG⊥CT,
∴∠FQP=∠FRN=∠DQE=∠NKT=90°,
∴DQ=EQ=TK=NK=,FQ=FE+EQ=,
∵∠NKT=∠KQR=∠FRN=90°,
∴四边形NKQR是矩形,
∴QR=NK=,
∴FR=FQ+QR=,NR=KQ=DK−DQ=,
∴,
再延长NS交ML于点Z,易证得:△NMZ≅△FNR(SAS),
∴FN=MN,∠NFR=∠MNZ,
∵∠NFR+∠FNR=90°,
∴∠MNZ+∠FNR=90°,
即∠FNM=90°,
同理可得:∠NFH=∠FHM=90°,
∴四边形FHMN为正方形,
∴正方形FHMN的面积=,
故答案为:.
本题主要考查了正方形和矩形性质与判定及与全等三角形性质与判定的综合运用,熟练掌握相关方法是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)小明跑步的平均速度为20米/分钟.(2)小明能在演唱会开始前赶到奥体中心.
【解析】
(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小明骑车的时间比跑步的时间少用了5分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)根据时间=路程÷速度求出小明跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的4分钟即可求出小明赶回奥体中心所需时间,将其与30进行比较后即可得出结论.
【详解】
解:(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,
根据题意得:-=5,
解得:x=20,
经检验,x=20是原分式方程的解.
答:小明跑步的平均速度为20米/分钟.
(2)小明跑步到家所需时间为300÷20=15(分钟),
小明骑车所用时间为15-5=10(分钟),
小明从开始跑步回家到赶回奥体中心所需时间为15+10+4=29(分钟),
∵29<30,
∴小明能在演唱会开始前赶到奥体中心.
本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.
15、 (I)见解析;(II) 点的横坐标为12.
【解析】
(I)将直线与直线联立方程求解,即可得到点A的坐标,然后可以在坐标系中标出点A;求出直线 与x轴的交点B,连接AB即是直线y2.
(II)用x表示出PQ的长度和Q点的横坐标,根据△POQ 的面积等于60,用等面积法即可求出点Q的横坐标.
【详解】
(I)在中,令,则,解得:,
∴与轴的交点的坐标为.
由解得.
所以点.
过、两点作直线的图象如图所示.
(II)∵点是直线在第一象限内的一点,
∴设点的坐标为,又∥轴,
∴点.
∴.
∵,
又的面积等于60,
∴,解得:或(舍去).
∴点的横坐标为12.
本题主要是考查了一次函数.
16、当时,函数与的值相等,函数值是.
【解析】
依题意列出方程组,解出方程组的解即可.
【详解】
解:由题意可得,
解得
∴当时,函数与的值相等,函数值是.
本题考查了函数值与自变量的关系,能依题意列出方程组,是解题的关键.
17、(1)详见解析;(2)
【解析】
(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;
(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.
【详解】
证明:过点作于点,于点
是对角线上的动点
,
∠GPC+∠CPE= 90°
(2)连接BD,如图2.
∵四边形ABCD是正方形,
∴∠BOP=90°.
∵PE⊥PB即∠BPE=90°,
∴∠PBO=90°-∠BPO=∠EPF.
∵EF⊥PC即∠PFE=90°,
∴∠BOP=∠PFE.
在△BOP和△PFE中,
,
∴△BOP≌△PFE(AAS),
∴BO=PF.
∵四边形ABCD是正方形,
∴OB=OC,∠BOC=90°,
∴BC=OB.
∵BC=2,
∴OB=,
∴PF=.
本题主要考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质等知识,有一定的综合性,而通过添加辅助线证明三角形全等是解决本题的关键.
18、该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).
【解析】
把x、y的值代入y=kx-1,通过解方程求出k的值得到一次函数的解析式,根据直线与x轴相交时,函数的y值为0,与y轴相交时,函数的x值为0求出该直线与坐标轴的交点坐标.
【详解】
解:∵一次函数y=kx-1,当x=2时,y=-2,
∴-2=2k-1,解得k=1,
∴一次函数的解析式为y=x-1.
∵当y=0时,x=1;
当x=0时,y=-1,
∴该直线与x轴交点的坐标是(1,0),与y轴的交点坐标是(0,-1).
本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.正确求出直线的解析式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由菱形的性质可得,,,由直角三角形的性质可得,由勾股定理可求的长,即可得的长.
【详解】
解:如图所示:
菱形的周长为,
,,,
,
,
,
.
.
故答案为:.
本题考查了菱形的性质,直角三角形角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.
20、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
21、-1
【解析】
连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到=4,然后去绝对值即可得到满足条件的k的值.
【详解】
解:连结OA,如图,
∵轴,
∴OC∥AB,
∴S△OAB=S△ABC=4,
而S△OAB=,
∴=4,
∵k
相关试卷
这是一份2024年上海浦东第四教育署数学九上开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年上海市浦东区数学九上开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年上海市浦东区第四教育署九上数学开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。