陕西省西安市西安铁一中学2025届九上数学开学达标检测试题【含答案】
展开
这是一份陕西省西安市西安铁一中学2025届九上数学开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)等式成立的x的取值范围在数轴上可表示为( )
A.B.C.D.
2、(4分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( )
A.B.C.D.
3、(4分)如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为
A.B.C.D.
4、(4分)下列变形中,正确的是( )
A.B.
C.D.
5、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
则该二次函数图象的对称轴为( )
A.y轴B.直线x=C.直线x=1D.直线x=
6、(4分)对于数据3,3,1,3,6,3,10,3,6,3,1.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )
A.1个B.1个C.3个D.4个
7、(4分)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是( )
A.4B.2C.1D.
8、(4分)已知,则的大小关系是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于有增根,则_____;
10、(4分)已知直线过点和点,那么关于的方程的解是________.
11、(4分)如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为_____.
12、(4分)如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP = 3,PE⊥PB交CD于点E,则PE =____________.
13、(4分)一组正整数2,4,5,从小到大排列,已知这组数据的中位数和平均数相等,那么的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).
(1)求这个一次函数的表达式;
(2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.
15、(8分)先化简再求值,其中x=-1.
16、(8分)在△ABC中,AB=30,BC=28,AC=1.求△ABC的面积.
某学习小组经过合作交流给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
17、(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
18、(10分)四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.
(1)如图,求证:矩形是正方形;
(2)当线段与正方形的某条边的夹角是时,求的度数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将正比例函数y=3x的图象向下平移11个单位长度后,所得函数图象的解析式为______.
20、(4分)如图,点是矩形的对角线的中点,交于点,若,,则的长为______.
21、(4分)分解因式:2a3﹣8a=________.
22、(4分)如图,沿折痕AE折叠矩形ABCD的一边,使点D落在BC边上一点F处.若AB=8,且△ABF的面积为24,则EC的长为__.
23、(4分)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ___________________ .它是 ________ 命题(填“真”或“假”).
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)2﹣6+3;
(2)(1+)(﹣)+(﹣)×.
25、(10分)某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计,绘制了两幅尚不完整的统计图如图所示,
根据统计图中的信息解答下列问题:
(1)若组的频数比组小,则频数分布直方图中________,________;
(2)扇形统计图中________,并补全频数分布直方图;
(3)若成绩在分以上为优秀,全校共有名学生,请估计成绩优秀的学生有多少名?
26、(12分)解分式方程:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据二次根式有意义的条件即可求出的范围.
【详解】
由题意可知: ,
解得:,
故选:.
考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
2、D
【解析】
试题分析:根据一元一次不等式的解法解不等式x+1≤0,得x≤﹣1.
表示在数轴上为:.
故选D
考点:不等式的解集
3、C
【解析】
根据对称性可知:BE=FE,∠AFE=∠ABF=90°,又因为∠C=∠C,所以ΔCEF∽ΔCAB,根据相似性可得出:,BE=EF=,在ΔABC中,由勾股定理可求得AC的值,AB=1,CE=2-BE,将这些值代入该公式求出BE的值.
【详解】
解:设BE的长为x,则BE=FE=x、CE=2-x,
在Rt△ABC中,AC==,
∵∠FCE=∠BCA,∠AFE=∠ABE=90°,
∴△CEF∽△CAB(两对对应角相等的两三角形相似),
∴
∴BE=EF= =×1,x=,
∴BE=x=,
故选:C.
本题主要考查图形的展开与折叠和矩形的性质,同时学生们还要把握勾股定理和相似三角形的性质知识点.
4、A
【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非1的数或式子,分式的值改变.
【详解】
A、,正确;
B、,错误;
C、,错误;
D、,错误;
故选A.
本题主要考查了分式的性质.注意约分是约去分子、分母的公因式,并且分子与分母相同时约分结果应是1,而不是1.
5、D
【解析】
观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x= .故选D.
6、A
【解析】
将这组数据从小到大排列为:1,1,2,2,2,2,2,2,6,6,10,共11个数,所以第6个数据是中位数,即中位数为2.
数据2的个数为6,所以众数为2.
平均数为,
由此可知(1)正确,(1)、(2)、(4)均错误,
故选A.
7、C
【解析】
根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.
【详解】
解:∵四边形ABCD是正方形,
∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,
∴∠AOB=90°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠AOE=∠BOF,
∴△AOE≌△BOF(ASA),
∴△AOE的面积=△BOF的面积,
∴四边形AFOE的面积=正方形ABCD的面积=×22=1;
故选C.
本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.
8、B
【解析】
先根据幂的运算法则进行计算,再比较实数的大小即可.
【详解】
,
,
,
.
故选:.
此题主要考查幂的运算,准确进行计算是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
方程两边都乘以最简公分母(x –1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.
【详解】
解:方程两边都乘(x﹣1),得
1-ax+3x=3x﹣3,
∵原方程有增根
∴最简公分母x﹣1=0,即增根为x=1,
把x=1代入整式方程,得a=1.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.
10、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
11、1.
【解析】
分析题目需要添加辅助线,先过E作EF⊥AD于F,设OE=x,则EH=AH=x,AE=x,AO=x+x,在Rt△ABO中,根据勾股定理列方程求解即可.
【详解】
如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,
∵DE平分∠ODA,EO⊥DO,EH⊥DH,
∴OE=HE,
设OE=x,则EH=AH=x,AE=x,AO=x+x,
在Rt△ABO中,
AO2+BO2=AB2,
∴(x+x)2+(x+x)2=(2+)2,
解得x=1(负值已舍去),
∴线段OE的长为1.
故答案为:1.
此题考查正方形的性质,解决问题的关键是作辅助线构造直角三角形,运用勾股定理列方程进行计算;
12、
【解析】
连接BE,设CE的长为x
∵AC为正方形ABCD的对角线,正方形边长为4,CP=3
∴∠BAP=∠PCE=45°,AP=4-3=
∴BP2=AB2+AP2-2AB×AP×cs∠BAP=42+()2-2×4××=10
PE2=CE2+CP2-2CE×CP×cs∠PCE=(3)2+x2-2x×3×=x2-6x+18
BE2=BC2+CE2=16+x2 在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
∴PE2=22-6×2+18=10 ∴PE=.
13、1
【解析】
根据这组数据的中位数和平均数相等,得出(4+5)÷2=(2+4+5+x)÷4,求出x的值即可.
【详解】
∵这组数据的中位数和平均数相等,
∴(4+5)÷2=(2+4+5+x)÷4,
解得:x=1.
故答案为:1.
此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)见解析
【解析】
(1)设一次函数解析式为,将A,B坐标代入求出k,b的值,即可得解析式;
(2)建立坐标系,找到A,B两点的位置,再连线即可.
【详解】
(1)设一次函数解析式为,
将A(-1,2)和点B(0,4)代入得:
解得,
∴一次函数解析式为
(2)如图所示,
本题考查求一次函数解析式与作图,熟练掌握待定系数法求函数解析式是解题的关键.
15、.
【解析】
原式
.
当时,原式
16、△ABC的面积为2
【解析】
根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.
【详解】
解:过点D作AD⊥BC,垂足为点D.
设BD=x,则CD=28﹣x.
在Rt△ABD中,AB=30,BD=x,
由勾股定理可得AD2=AB2﹣BD2=302﹣x2,
在Rt△ACD中,AC=1,CD=28﹣x,
由勾股定理可得AD2=AC2﹣CD2=12﹣(28﹣x)2,
∴302﹣x2=12﹣(28﹣x)2,
解得:x=18,
∴AD2=AB2﹣BD2=302﹣x2=302﹣182=576,
∴AD=24,
S△ABC=BC•AD=×28×24=2
则△ABC的面积为2.
此题考查勾股定理,解题关键是根据题意正确表示出AD2的值.
17、迁移应用:①证明见解析;②CD=AD+BD;拓展延伸:①证明见解析;②3.
【解析】
迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;
②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cs30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;
拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;
②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cs30°,由此即可解决问题.
【详解】
迁移应用:①证明:如图②
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
∴△DAB≌△EAC,
②解:结论:CD=AD+BD.
理由:如图2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD•cs30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD.
拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.
∵四边形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等边三角形,
∴BA=BD=BC,
∵E、C关于BM对称,
∴BC=BE=BD=BA,FE=FC,
∴A、D、E、C四点共圆,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等边三角形,
②解:∵AE=5,EC=EF=2,
∴AH=HE=2.5,FH=4.5,
在Rt△BHF中,∵∠BFH=30°,
∴=cs30°,
∴BF==3=3.
本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.
18、∠EFC=125°或145°.
【解析】
(1)首先作EP⊥CD于P,EQ⊥BC于Q,由∠DCA=∠BCA,得出EQ=EP,再由∠QEF+∠FEC=45°,得出∠PED+∠FEC=45°,进而得出∠QEF=∠PED,即可判定Rt△EQF≌Rt△EPD,得出EF=ED,即可得证;
(2)分类讨论:①当DE与AD的夹角为35°时,∠EFC=125°;②当DE与DC的夹角为35°时,∠EFC=145°,即可得解.
【详解】
(1)作EP⊥CD于P,EQ⊥BC于Q,如图所示
∵∠DCA=∠BCA
∴EQ=EP,
∵∠QEF+∠FEP=90°,∠PED+∠FEP=90°,
∴∠QEF=∠PED
在Rt△EQF和Rt△EPD中,
∴Rt△EQF≌Rt△EPD
∴EF=ED
∴矩形DEFG是正方形;
(2)①当DE与AD的夹角为35°时,
∠DEP=∠QEF=35°,
∴∠EFQ=90°-35°=55°,
∠EFC=180°-55°=125°;
②当DE与DC的夹角为35°时,
∠DEP=∠QEF=55°,
∴∠EFQ=90°-55°=35°,
∠EFC=180°-35°=145°;
综上所述,∠EFC=125°或145°.
此题主要考查正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据一次函数的上下平移规则:“上加下减”求解即可
【详解】
解:将正比例函数y=3x的图象向下平移个单位长度,
所得的函数解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知一次函数图象变换的法则是解答此题的关键.
20、
【解析】
可知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.
【详解】
解:∵四边形ABCD是矩形,
∴∠D=90°,
∵O是矩形ABCD的对角线AC的中点,OM∥AB,
∴OM是△ADC的中位线,
∵OM=2,
∴DC=4,
∵AD=BC=6,
∴AC=
由于△ABC为直角三角形,且O为AC中点
∴BO=
因此OB长为 .
本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.
21、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
22、2
【解析】
先依据△ABF的面积为24,求出BF的长,再根据勾股定理求出AF,也就是BC的长,接下来,求得CF的长,设EC=x,则FE=DE=8﹣x,在△EFC中,依据勾股定理列出关于x的方程,从而可求得EC的长.
【详解】
解:∵AB=8,S△ABF=24
∴BF=1.
∵在Rt△ABF中,AF==10,
∴AD=AF=BC=10
∴CF=10﹣1=4
设EC=x,则EF=DE=8﹣x.
在Rt△ECF中,EF2=CF2+CE2,即(8﹣x)2=x2+42,解得,x=2.
∴CE=2.
故答案为2.
本题综合考查了翻折的性质、矩形的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.
23、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 真
【解析】
分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.
故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.
点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
二、解答题(本大题共3个小题,共30分)
24、(1)14;(2)
【解析】
(1)直接利用二次根式的性质化简得出答案;
(2)首先利用二次根式乘法运算法则化简,进而计算得出答案.
【详解】
(1)原式=4-6×+12
=4-2+12
=14;
(2)原式=-+-3+6-3
=.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
25、(1)16,40;(2),见解析;(3)估计成绩优秀的学生有470名.
【解析】
(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;
(2)利用360°乘以对应的比例即可求解;
(3)利用总人数乘以对应的百分比即可求解.
【详解】
(1)学生总人数:(人)
则,
(2),
组的人数是:(人),补全条形统计图如图
(3)样本、两组的百分数的和为,
∴(名)
答:估计成绩优秀的学生有470名.
本题考查的是频数分布直方图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.直方图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体的思想.
26、x=1.
【解析】
观察可得最简公分母是(x-2)(x+2),方程两边同时乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
方程两边同乘以,得
解得
检验: 当时,,∴是原方程的解
∴原方程的解为.
此题考查了分式方程的解法,需要掌握转化思想的应用,注意分式方程需检验.
题号
一
二
三
四
五
总分
得分
批阅人
x
﹣1
0
1
2
3
y
5
1
﹣1
﹣1
1
相关试卷
这是一份陕西省西安铁一中学2025届九上数学开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安市雁塔区高新一中2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安市高新第一中学2025届九上数学开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。