陕西省汉中学市城固县2024-2025学年数学九上开学复习检测模拟试题【含答案】
展开
这是一份陕西省汉中学市城固县2024-2025学年数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为
A.13B.17C.20D.26
2、(4分)已知实数满足,则代数式的值是( )
A.7B.-1C.7或-1D.-5或3
3、(4分)如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是( )
A.2B.3C.4D.5
4、(4分)如图,正方形的边长为3,点在正方形. 内若四边形恰是菱形,连结,且,则菱形的边长为( ).
A.B.C.2D.
5、(4分)为了了解中学课堂教学质量,我市教体局去年对全市中学教学质量进行调查方法是通过考试参加考试的为全市八年级学生,从中随机抽取600名学生的英语成绩进行分析对于这次调查,以下说法不正确的是( )
A.调查方法是抽样调查B.全市八年级学生是总体
C.参加考试的每个学生的英语成绩是个体D.被抽到的600名学生的英语成绩是样本
6、(4分)共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确的是( )
A.B.
C.D.
7、(4分)如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=( )
A.25°B.30°C.35°D.55°
8、(4分)下列关于的方程中,有实数解的为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知如图所示,AB=AD=5,∠B=15°,CD⊥AB于C,则CD=___.
10、(4分)将直线y=2x+1向下平移2个单位,所得直线的表达式是__________.
11、(4分)已知二次函数的图象与轴没有交点,则的取值范围是_____.
12、(4分)如果多边形的每个内角都等于,则它的边数为______.
13、(4分)如图,一张纸片的形状为直角三角形,其中,,,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为______cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,的顶点坐标分别,,,以坐标原点为位似中心,在第三象限画出与位似的三角形,使相似比为,并写出所画三角形的顶点坐标.
15、(8分)为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:
现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:
(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______;
(2)补全图中的条形统计图;
(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.
16、(8分)已知直线:与轴交于点A.
(1)A点的坐标为 .
(2)直线和:交于点B,若以O、A、B、C为顶点的四边形是平行四边形,求点C的坐标 .
17、(10分)先化简,再求值:其中
18、(10分)观察下列各式
,
,
,
,
由此可推断
(1)= = .
(2)请猜想(1)的特点的一般规律,用含m的等式表示出来为 = (m表示正整数).
(3)请参考(2)中的规律计算:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:_________
20、(4分)若x是的整数部分,则的值是 .
21、(4分)若关于x的分式方程无解. 则常数n的值是______.
22、(4分)已知一组数据3、x、4、5、6,若该组数据的众数是5,则x的值是_____.
23、(4分)如图,在平面直角坐标系中,直线y=x-1与矩形OABC的边BC、OC分别交于点E、F,已知OA=3,OC=4,则的面积是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在“爱满江阴”慈善一日捐活动中,
某学校团总支为了了解本校学生的捐款情况,随机抽取了
50名学生的捐款数进行了统计,并绘制成下面的统计图.
(1)这50名同学捐款的众数为 ,中位数为 .
(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.
25、(10分)解方程与不等式组
(1)解方程:
(2)解不等式组
26、(12分)选用适当的方法解下列方程:
(1)(x-2)2-9=0;
(2)x(x+4)=x+4.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由平行四边形的性质得出,,,即可求出的周长.
【详解】
四边形ABCD是平行四边形,
,,,
的周长.
故选:B.
本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.
2、A
【解析】
将x2-x看作一个整体,然后利用因式分解法解方程求出x2-x的值,再整体代入进行求解即可.
【详解】
∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,
∴(x2﹣x+2)(x2﹣x﹣6)=0,
∴x2﹣x+2=0或x2﹣x﹣6=0,
∴x2﹣x=﹣2或x2﹣x=6;
当x2﹣x=﹣2时,x2﹣x+2=0,
∵b2﹣4ac=1﹣4×1×2=﹣7<0,
∴此方程无实数解;
当x2﹣x=6时,x2﹣x+1=7,
故选A.
本题考查了用因式分解法解一元二次方程,解本题的关键是把x2-x看成一个整体.
3、B
【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.
【详解】
在中,∴,,,∴.
∴为直角三角形,且.
∵四边形是平行四边形,
∴,.
∴当取最小值时,线段最短,此时.
∴是的中位线.
∴.∴.
故选B.
本题考查了勾股定理逆定理,平行四边形的性质,三角形的中位线以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.
4、D
【解析】
过点F作FM⊥AB,则FM=BM,BF2=2FM2,由AF2﹣FB2=3可得AM﹣BM=1,可求出AM=2,BM=1,则AF的长可求出.
【详解】
如图,过点F作FM⊥AB,
∵∠ABF=45°,
∴FM=BM,
∴BF2=2FM2,
∴AF2﹣BF2=AF2﹣FM2﹣BM2=3
∴AM2﹣BM2=3,
∵AM+BM=3,
∴AM﹣BM=1,
∴AM=2,BM=1,
∴.
故选:D.
此题考查菱形的性质,正方形的性质,勾股定理,等腰直角三角形的性质,注意构造直角三角形是解决问题的关键.
5、B
【解析】
根据全面调查与抽样调查的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,对各选项分析后利用排除法求解.
【详解】
、调查方法是抽样调查,正确;
、全市八年级学生的英语成绩是总体,错误;
、参加考试的每个学生的英语成绩是个体,正确;
、被抽到的600名学生的英语成绩是样本,正确.
故选:.
此题考查了总体、个体、样本、样本容量.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
6、B
【解析】
直接根据题意得出第三季度投放单车的数量为:(1+x)2=1+0.1,进而得出答案.
【详解】
解:设该公司第二、三季度投放单车数量的平均增长率为x,根据题意可得:
(1+x)2=1.1.
故选:B.
此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
7、A
【解析】
由AD∥BC得到∠B=180°-∠A,而∠A=115°,由此可以求出∠B,又CE⊥AB,所以在三角形BCE中利用三角形内角和即可求出∠BCE.
【详解】
解:∵AD∥BC,
∴∠B=180°-∠A=65°,
又CE⊥AB,
∴∠BCE=90°-65°=25°.
故选:A.
此题主要考查平行四边形的性质和直角三角形的性质.
8、C
【解析】
根据二次根式必须有意义,可以得到选项中的无理方程是否有解,从而可以解答本题.
【详解】
,
,
即故无解.
A错误;
,
又,
,
即故无解,
B错误;
,
,
即有解,
C正确;
,
,
,故无解.
D错误;
故选C.
此题考查无理方程,解题关键在于使得二次根式必须有意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据等边对等角可得∠ADB=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD.
【详解】
∵AB=AD,
∴∠ADB=∠B=15°,
∴∠DAC=∠ADB+∠B=30°,
又∵CD⊥AB,
∴CD=AD=×5=.
故答案为:.
本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
10、
【解析】
由题意得:平移后的解析式为:y=2x+1-2=2x-1,
即.所得直线的表达式是y=2x-1.
故答案为y=2x-1.
11、
【解析】
由二次函数y=2x2-6x+m的图象与x轴没有交点,可知△<0,解不等式即可.
【详解】
∵二次函数y=2x2-6x+m的图象与x轴没有交点,
∴△<0,
∴(-6)2-4×2×m<0,
解得:;
故答案为:.
本题考查了抛物线与x轴的交点,熟记:有两个交点,△>0;有一个交点,△=0;没有交点,△<0是解决问题的关键.
12、1
【解析】
先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
13、3
【解析】
在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.
【详解】
在Rt△ABC中,
∵AC=6,BC=8,
∴AB==10,
∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,
∴AE=AC=6,DE=DC,∠AED=∠C=90°,
∴BE=AB-AE=10-6=4,
设CD=x,则BD=8-x,
在Rt△BDE中,
∵BE2+DE2=BD2,
∴42+x2=(8-x)2,解得x=3,
即CD的长为3cm.
故答案为3
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
三、解答题(本大题共5个小题,共48分)
14、见解析,,,.
【解析】
直接利用位似图形的性质得出对应点位置进而得出答案.
【详解】
解:如图所示:
,
则,,.
此题主要考查了位似变换,以及坐标与图形的性质,关键是掌握若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).
15、(1)100;;(2)补图见解析;(3)240人.
【解析】
根据条件图可知(1)一共抽取学生名,图中等级为D级的扇形的圆心角等于;(2)求出等级人数为名,再画图;(3)由(2)估计该校等级为C级的学生约有.
【详解】
解:在这次调查中,一共抽取学生名,
图中等级为D级的扇形的圆心角等于,
故答案为100、;
等级人数为名,
补全图形如下:
估计该校等级为C级的学生约有人.
本题考核知识点:统计图,由样本估计总体. 解题关键点:从统计图获取信息.
16、(1)(0,2);(2)(3,2)或(3,6)或(-3,-2).
【解析】
(1),令x=0,则y=2,即可求解;
(2)分AO是平行四边形的一条边、AO是平行四边形的对角线,两种情况分别求解即可.
【详解】
解:(1),令x=0,则y=2,
则点A(0,2),
故答案为(0,2);
(2)联立直线l1和l2的表达式并解得:x=3,
故点B(3,4),
①当AO是平行四边形的一条边时,
则点C(3,2)或(3,6);
②当AO是平行四边形的对角线时,
设点C的坐标为(a,b),点B(3,4),
BC的中点和AO的中点坐标,
由中点坐标公式:a+3=0,b+4=2,
解得:a=-3,b=-2,
故点C(-3,-2);
故点C坐标为:(3,2)或(3,6)或(-3,-2).
本题考查的是一次函数综合运用,涉及到平行四边形的性质,其中(2),要分类求解,避免遗漏.
17、
【解析】
先去括号,再把除法统一为乘法把分式化简,再把数代入.
【详解】
解:原式
当时,原式.
本题考查分式的混合运算,通分、分解因式、约分是关键.
18、(1),;(2) ,;(3)0.
【解析】
(1)根据题目中的例子可以解答本题;
(2)根据(1)中的例子可以写出含m的等式;
(3)根据前面的发现,可以计算出所求式子的值.
【详解】
解:(1)=,
故答案为:,;
(2)由(1)可得
,
故答案为:,;
(3)
=
=
=0.
本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化规律,求出所求式子的值.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x(x-9)
【解析】
分析:直接提取公因式x,进而分解因式即可.
详解: x2﹣9x=x(x﹣9).
故答案为:x(x﹣9).
点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
20、1
【解析】
3
相关试卷
这是一份南通市崇川区启秀中学2024-2025学年数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市江阴中学2024-2025学年九上数学开学复习检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份黄冈市重点中学2024-2025学年九上数学开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。