陕西省汉中市2024年九年级数学第一学期开学达标检测模拟试题【含答案】
展开
这是一份陕西省汉中市2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为( )
A.4B.3C.2D.1
2、(4分)勾股定理是“人类最伟大的十个科学发现之一”.中国对勾股定理的证明最早出现在对《周髀算经》的注解中,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.在《周髀算经》注解中证明勾股定理的是我国古代数学家( )
A.祖冲之B.杨辉C.刘徽D.赵爽
3、(4分)用配方法解方程配方正确的是( )
A.B.C.D.
4、(4分)如图,在中,对角线,交于点.若,,,则的周长为( )
A.B.C.D.
5、(4分)在以x为自变量, y为函数的关系式y=5πx中,常量为( )
A.5B.πC.5πD.πx
6、(4分)改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
根据上述信息,下列结论中错误的是( )
A.2017年第二季度环比有所提高
B.2017年第三季度环比有所提高
C.2018年第一季度同比有所提高
D.2018年第四季度同比有所提高
7、(4分)下列二次根式是最简二次根式的是( )
A.B.C.D.
8、(4分)若最简二次根式2与是同类二次根式,则a的值为( )
A.B.2C.﹣3D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如上图,点 A 在双曲线 y=上,且 OA=4,过A作 AC⊥x 轴,垂足为 C,OA 的垂直平分线交OC于B,则△ABC 的周长为_____.
10、(4分)如图,在平行四边形ABCD中,,,垂足分别为E、F,,,,则平行四边形ABCD的面积为_________.
11、(4分)一支蜡烛长10cm,点燃时每分钟燃烧0.2cm,则点燃后蜡烛长度(cm)随点燃时间 (min)而变化的函数关系式为_____________________,自变量的取值范围是________________.
12、(4分)如图,在中,,,是的角平分线,过点作于点,若,则___.
13、(4分)一组数据2,3,2,3,5的方差是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)平行四边形ABCD中,对角线AC上两点E,F,若AE=CF,四边形DEBF是平行四边形吗?说明你的理由.
15、(8分)已知直线与轴,轴分别交于点,将对折,使点的对称点落在直线上,折痕交轴于点.
(1)求点的坐标;
(2)若已知第四象限内的点,在直线上是否存在点,使得四边形为平行四边形?若存在,求出点的坐标;若不存在,说明理由;
(3)设经过点且与轴垂直的直线与直线的交点为为线段上一点,求的取值范围.
16、(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.
(1)画出关于轴的对称图形,并写出其顶点坐标;
(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.
17、(10分)某校八年级为庆祝中华人民共和国建国70周年,准备举行唱红歌、颂经典活动.八年级(2)班积极准备,需购买文件夹若干,某文具店有甲、乙两种文件夹.
(1)若该班只购买甲种文件夹,且购买甲种文件夹的花费(单位:元)与其购买数量(单位:件)满足一次函数关系,若购买20个,需花费180元;若购买30个,需花费260元.该班若需购买甲种文件夹60件,求需花费多少元?
(2)若该班购买甲,乙两种文件夹,那么甲种文件夹的单价比乙种文件夹的单价贵2元,若用240元购买甲种文件夹的数量与用180元购买乙种文件夹的数量相同.求该文具店甲乙两种文件夹的单价分别是多少元?
18、(10分)已知:如图,是的中线,是线段的中点,.
求证:四边形是等腰梯形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:__.
20、(4分)写出一个你熟悉的既是轴对称又是中心对称的图形名称______.
21、(4分)若a≠b,且a2﹣a=b2﹣b,则a+b=__.
22、(4分)如果函数y=kx+b的图象与x轴交点的坐标是(3,0),那么一元一次方程kx+b=0的解是_____.
23、(4分)多边形的每个外角都等于45°,则这个多边形是________边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y箱.
(1)让小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?
(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A, B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?
25、(10分)瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.
(1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?
(2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?
26、(12分)解方程组:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题解析:假如平行四边形ABCD是矩形,
OA=OC,OB=OD,AC=BD,
∴OA=OB=1.
故选B.
点睛:对角线相等的平行四边形是矩形.
2、D
【解析】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.
【详解】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.
故选D.
我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”.
3、A
【解析】
本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
【详解】
解:,
,
∴,
.
故选:.
此题考查配方法的一般步骤:
①把常数项移到等号的右边;
②把二次项的系数化为1;
③等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
4、B
【解析】
根据平行四边形的性质进行计算即可.
【详解】
解:在中,BO=BD=, CO=AC=2,
∴的周长为:B0+CO+BC=+2+3=7.5
故答案选:B
本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.
5、C
【解析】
根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.
【详解】
在以x为自变量, y为函数的关系式y=5πx中,常量为5π,
故选:C.
考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.
6、C
【解析】
根据环比和同比的比较方法,验证每一个选项即可.
【详解】
2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
故选C.
本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
7、B
【解析】
根据最简二次根式的概念即可求出答案.
【详解】
(A)原式=2 ,故A不是最简二次根式;
(C)原式=2 ,故B不是最简二次根式;
(D)原式= ,故D不是最简二次根式;
故选:B.
此题考查最简二次根式,解题关键在于掌握运算法则
8、B
【解析】
根据题意,它们的被开方数相同,列出方程求解.
【详解】
∵最简二次根式2与是同类二次根式,
∴3a﹣1=a+3,解得a=2,
故选:B.
此题考查同类二次根式的定义,最简二次根式的特点,正确理解题意列出方程是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组 ,解之即可求出△ABC的周长.
【详解】
解:∵OA的垂直平分线交OC于B,
∴AB=OB,
∴△ABC的周长=OC+AC,
设OC=a,AC=b,
则:,
解得a+b=2,
即△ABC的周长=OC+AC=2cm.
故答案为:2cm.
本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.
10、
【解析】
利用已知条件及直角三角形中角所对直角边是斜边的一半即可求出BC、AB的长,在中,利用勾股定理可求出BE的长,以DC为底,BE为高求其面积即可.
【详解】
解:
四边形ABCD是平行四边形
同理可得
在中,
又
故答案为:
本题考查了平行四边形的性质、直角三角形中角所对直角边是斜边的一半及勾股定理的综合运用,灵活运用直角三角形的性质确定线段长度是解题的关键.
11、y=10-0.2x 0≤x≤50
【解析】
根据点燃后蜡烛的长度=蜡烛原长-燃烧掉的长度可列出函数关系式;根据0≤y≤10可求出自变量的取值范围.
【详解】
解:由题意得:y=10-0.2x,
∵0≤y≤10,
∴0≤10-0.2x≤10,解得:0≤x≤50,
∴自变量x的取值范围是:0≤x≤50,
故答案为:y=10-0.2x;0≤x≤50.
本题考查了由实际问题抽象出一次函数,正确得出变量之间的关系是解题的关键.
12、
【解析】
根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式计算即可得解.
【详解】
∵∠ACB=90°,CA=CB,
∴∠B=45°,
∵AD平分∠CAB,∠ACB=90°,DE⊥AB,
∴DE=CD=1,∠BDE=45°,
∴BE=DE=1,
在Rt△BDE中,根据勾股定理得,BD=.
故答案为:.
本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,熟记性质是解题的关键.
13、1.2
【解析】
解:先求出平均数(2+3+2+3+5)5=3,
再根据方差公式计算方差=即可
三、解答题(本大题共5个小题,共48分)
14、是,理由见解析.
【解析】
连接BD,交AC于点O,证明四边形AECF的对角线互相平分即可.
【详解】
四边形DEBF是平行四边形,理由如下:
连接BD,
∵四边形ABCD是平行四边形,
∴AO=CO,DO=BO,
∵AE=CF,
∴AO−AE=CO−CF,
∴EO=FO,
又∵DO=BO,
∴四边形DEBF是平行四边形.
本题考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.
15、(1)C(3,0);(2)不存在;(3)0≤|QA−QO|≤1.
【解析】
(1)由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,即可求解;
(2)当四边形OPAD为平行四边形时,根据OA的中点即为PD的中点即可求解;
(3)当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA−QO|=0,当点Q在点B处时,|QA−QO|有最大值,即可求解.
【详解】
解:(1)连接CE,则CE⊥AB,
与x轴,y轴分别相交于点A,B,
则点A、B的坐标分别为:(8,0)、(0,6),则AB=10,
设:OC=a,则CE=a,BE=OB=6,
AE=10−6=1,CA=8−a,
由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,
解得a=3,
故点C(3,0);
(2)不存在,理由:
将点B、C的坐标代入一次函数表达式y=kx+b并解得:
直线BC的表达式为:y=−2x+6,
设点P(m,n),当四边形OPAD为平行四边形时,
OA的中点即为PD的中点,
即:m+=8,n−=0,
解得:m=,n=,
当x=时,y=−2x+6=1,
故点P不在直线BC上,
即在直线BC上不存在点P,使得四边形OPAD为平行四边形;
(3)当x=时,y=−2x+6=−5,故点F(,−5),
当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,
则|QA−QO|=0,
当点Q在点B处时,|QA−QO|有最大值,
此时:点A(8,0)、点O(0,0)、点Q(0,6),
则AQ=10,QO=6,|QA−QO|=1,
故|QA−QO|的取值范围为:0≤|QA−QO|≤1.
本题考查的是一次函数综合运用,涉及到中垂线和平行四边形性质、勾股定理得运用等,其中(3),求解|QA−QO|的取值范围,需要在线段BF取特殊值来验证求解.
16、(1)图详见解析,;(2)图详见解析,
【解析】
(1)分别作出,,的对应点,,即可.
(2)分别作出,,的对应点,,即可.
【详解】
解:(1)△如图所示.,,;
(2)△如图所示.,,.
本题考查轴对称变换,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17、(1)买60件需要花费:(元);(2)甲种文件夹每件8元,乙种文件夹每件6元.
【解析】
(1)设一次函数解析式,根据题意列方程组即可;(2)该文具店甲乙两种文件夹的单价分别是x元和(x-2)元,根据题意列方程组即可.
【详解】
解:(1)设一次函数,
∴,
解得:,
∴一次函数的解析式为.
∴购买60件需要花费:(元).
(2)设甲种文件夹每件元,则乙种文件夹每件元.
解得:.
经检验:是原方程的解,且符合题意,
(元)
答:甲种文件夹每件8元,乙种文件夹每件6元.
本题考查了一次函数的应用,分式方程的应用,正确理解题意是解题的关键.
18、见解析.
【解析】
先证明△ADE≌△MDC得出AE=MC,证出AE=MB,得出四边形AEBM是平行四边形,证出BE=AC,而AE∥BC,BE与AC不平行,即可得出结论.
【详解】
证明:∵
∴.
∵,
∴.
∴.
∵,
∴.
∴四边形是平行四边形.
∴.
而,
∴.
∵,与不平行,
∴四边形是梯形.
∴梯形是等腰梯形.
本题考查了等腰梯形的判定、平行四边形的判定、全等三角形的判定与性质;熟练掌握等腰梯形的判定,证明三角形全等是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-
【解析】
直接利用二次根式的性质分别计算得出答案.
【详解】
解:原式
.
故答案为:.
此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
20、矩形
【解析】
根据轴对称图形与中心对称图形的概念求解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
【详解】
既是中心对称图形又是轴对称图形的名称:矩形(答案不唯一).
故答案为:矩形
本题考查的是轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
21、1.
【解析】
先移项,然后利用平方差公式和因式分解法进行因式分解,则易求a+b的值.
【详解】
由a2﹣a=b2﹣b,得
a2﹣b2﹣(a﹣b)=2,
(a+b)(a﹣b)﹣(a﹣b)=2,
(a﹣b)(a+b﹣1)=2.
∵a≠b,
∴a+b﹣1=2,
则a+b=1.
故答案是:1.
本题考查了因式分解的应用.注意:a≠b条件的应用,该条件告诉我们a﹣b≠2,所以必须a+b﹣1=2.
22、1
【解析】
根据方程的解是函数图象与x轴的交点的横坐标,即可求解.
【详解】
解:∵函数y=kx+b的图象与x轴的交点坐标是(1,0),
∴方程kx+b=0的解是x=1.
故答案为:1.
本题考查一次函数与一元一次方程,方程的解是函数图象与x轴的交点的横坐标
23、八
【解析】
根据多边形的外角和等于360°,用360°除以多边形的每个外角的度数,即可得出这个多边形的边数.
【详解】
解:∵360°÷45°=8,
∴这个多边形是八边形.
故答案为:八.
此题主要考查了多边形的外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于360°.
二、解答题(本大题共3个小题,共30分)
24、(1)小王共购进A水果25箱,B水果9箱;(2)应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.
【解析】
(1)根据题意中的相等关系“A种水果x箱的批发价+B种水果y箱的批发价=1200元,A种水果赚的钱+B种水果赚的钱=215元”列方程组求解即可;
(2)先用x表示y,列出利润w的关系式,再根据题意求出x的取值范围,然后根据一次函数的性质求出w的最大值及购进方案.
【详解】
解:(1)根据题意,得
,即,解得.
答:小王共购进A水果25箱,B水果9箱.
(2)设获得的利润为w元,根据题意得,
∵,∴,
∵A水果的数量不得少于B水果的数量,
∴,即,解得.
∴,
∵,∴w随x的增大而减小,
∴当x=15时,w最大=225,此时.
即应购进A水果15箱、B水果15箱能够获得最大利润,最大利润为225元.
本题考查了二元一次方程组的应用、一元一次不等式的解法和一次函数的性质,正确理解题意列出方程组、灵活应用一次函数的性质是解此题的关键.
25、(1)该学校接待学生人数的增长率为60%;(2)单价定为5元.
【解析】
(1)设平均月增长率为,根据题意得到一元二次方程即可求解;
(2)设定价为元,求出可卖出的件数,根据义卖所得的金额为600元得到一元二次方程即可求解.
【详解】
解:(1)设平均月增长率为,则根据题意得,
解得,(舍),
∴该学校接待学生人数的增长率为60%.
(2)设定价为元,此时可卖出件,
∴可列方程,解得,.
∵作品单价要尽可能便宜,
∴单价定为5元.
答:当单价定为5元时,义卖所得的金额为600元.
本题考查了一元二次方程的应用,关键在于明确数量与每件利润的表示方法.
26、,
【解析】
注意到可分解为,从而将原高次方程组转换为两个二元一次方程组求解.
【详解】
解:由得,即或,
∴原方程组可化为或.
解得;解得.
∴原方程组的解为,.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份陕西省渭南市名校2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省汉中市2025届数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届扬州梅岭中学九年级数学第一学期开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。