山东省日照市实验中学2024-2025学年九上数学开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式的值为0,则的取值为( )
A.B.1C.D.
2、(4分)关于x的一元二次方程的两实数根分别为、,且,则m的值为( )
A.B.C.D.0
3、(4分)在某次实验中,测得两个变量m和v之间的4组对应数据如右表,则m与v之间的关系最接近于下列各关系式中的( )
A.B.C.D.
4、(4分)若x取整数,则使分式的值为整数的x值有( )
A.3个B.4个C.6个D.8个
5、(4分)下列根式中,与是同类二次根式的是 ( )
A. B. C. D.
6、(4分)《九章算术》中的“折竹抵地”问题:一根竹子高丈(丈尺),折断后竹子顶端落在离竹子底端尺处,折断处离地面的高度是多少?( )
A.B.C.D.
7、(4分)下列式子从左边到右边的变形是因式分解的是( )
A.B.
C.D.
8、(4分)的倒数是( )
A.B.C.﹣3D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:π0-()-1=______.
10、(4分)将正比例函数的图象向右平移2个单位,则平移后所得到图象对应的函数解析式是__________.
11、(4分)若二次根式有意义,则的取值范围是______.
12、(4分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.
13、(4分)正十边形的外角和为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)当今,青少年用电脑手机过多,视力水平下降已引起了全社会的关注,某校为了解八年级1000名学生的视力情况,从中抽查了150名学生的视力情况,通过数据处理,得到如下的频数分布表.解答下列问题:
(1)分别指出参加抽测学生的视力的众数、中位数所在的范围;
(2)若视力为4.85以上(含4.85)为正常,试估计该校八年级学生视力正常的人数约为多少?
(3)根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数相应组中的权.请你估计该校八年级学生的平均视力是多少?
15、(8分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级学生参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下(单位:分):
七年级 88 94 90 94 84 94 99 94 99 100
八年级 84 93 88 94 93 98 93 98 97 99
整理数据:按如下分数段整理数据并补全表格:
分析数据:补全下列表格中的统计量:
得出结论:你认为哪个年级学生“汉字听写”大赛的成绩比较好?并说明理由.(至少从两个不同的角度说明推断的合理性)
16、(8分)化简:÷(-a-2),并代入一个你喜欢的值求值.
17、(10分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED
(1)判断△BEC的形状,并加以证明;
(2)若∠ABE=45°,AB=2时,求BC的长.
18、(10分)已知直线y=kx+3(1-k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.
实践操作
(1)当k=1时,直线l1的解析式为 ,请在图1中画出图象;当k=2时,直线l2的解析式为 ,请在图2中画出图象;
探索发现
(2)直线y=kx+3(1-k)必经过点( , );
类比迁移
(3)矩形ABCD如图2所示,若直线y=kx+k-2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,则m的取值范围是_____.
20、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
21、(4分)如图,正方形的两边、分别在轴、轴上,点在边上,以为中心,把旋转,则旋转后点的对应点的坐标是________.
22、(4分)若,则分式_______.
23、(4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)一次函数CD:与一次函数AB:,都经过点B(-1,4).
(1)求两条直线的解析式;
(2)求四边形ABDO的面积.
25、(10分)已知在边长为4的菱形ABCD中,∠EBF=∠A=60°,
(1)如图①,当点E、F分别在线段AD、DC上,
①判断△EBF的形状,并说明理由;
②若四边形ABFD的面积为7,求DE的长;
(2)如图②,当点E、F分别在线段AD、DC的延长线上,BE与DC交于点O,设△BOF的面积为S1,△EOD的面积为S2,则S1-S2的值是否为定值,如果是,请求出定值:如果不是,请说明理由.
26、(12分)已知:如图,正比例函数y=kx的图象经过点A,
(1)请你求出该正比例函数的解析式;
(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;
(3)请你判断点P(﹣,1)是否在这个函数的图象上,为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据分式的值为0的条件列式求解即可.
【详解】
根据题意得,x+1=0且x−1≠0,
解得x=−1.
故选A
此题考查分式的值为零的条件,难度不大
2、A
【解析】
根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.
【详解】
解:∵x1+x2=4,
∴x1+3x2=x1+x2+2x2=4+2x2=5,
∴x2=,
把x2=代入x2-4x+m=0得:()2-4×+m=0,
解得:m=,
故选:A.
本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=是解题的关键.
3、B
【解析】
根据表格得到对应v的大致取值,找到规律即可求解.
【详解】
根据表格可得到m,v的大致值为
m=1时,v=12+1,
m=2时,v=22+1,
m=3时,v=32+1,
m=4时,v=42+1,
故最接近
故选B.
此题主要考查函数的解析式,解题的关键是根据题意发现规律进行求解.
4、B
【解析】
首先把分式转化为,则原式的值是整数,即可转化为讨论的整数值有几个的问题.
【详解】
,
当或或或时,是整数,即原式是整数.
当或时,x的值不是整数,当等于或是满足条件.
故使分式的值为整数的x值有4个,是2,0和.
故选B.
本题主要考查了分式的值是整数的条件,把原式化简为的形式是解决本题的关键.
5、C
【解析】
试题分析:A.与被开方数不同,故不是同类二次根式;
B.与被开方数不同,故不是同类二次根式;
C.与被开方数相同,故是同类二次根式;
D.与被开方数不同,故不是同类二次根式.
故选C.
考点:同类二次根式.
6、A
【解析】
根据题意画出图形,设折断处离地面的高度为x,则AB=10-x,AC=x,BC=6,进而根据勾股定理建立方程求解即可.
【详解】
根据题意可得如下图形:
设折断处A离地面的高度为x,则AB=10-x,AC=x,BC=6,
∴,
解得:,
故选:A.
本题主要考查了勾股定理的运用,熟练掌握相关公式是解题关键.
7、B
【解析】
根据将多项式化为几个整式的乘积形式即为因式分解进行判断即可.
【详解】
解:A.左边是单项式,不是因式分解,
B.左边是多项式,右边是最简的整式的积的形式,是因式分解;
C.右边不是积的形式,不是因式分解,故错误;
D、右边不是积的形式,不是因式分解,故错误;;
故选:B.
本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.
8、D
【解析】
利用倒数定义得到结果,化简即可.
【详解】
的倒数为.
故选D.
此题考查了分母有理化,熟练掌握运算法则是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
直接利用零指数幂和负整数指数幂的运算法则进行计算即可.
【详解】
原式=1-3=-1.
故答案为:-1.
本题主要考查实数的运算,掌握零指数幂和负整数指数幂的运算法则是解题的关键.
10、
【解析】
根据“左加右减”的法则求解即可.
【详解】
解:将正比例函数的图象向右平移2个单位,
得=,
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
11、
【解析】
根据二次根式有意义的条件即可求解.
【详解】
依题意得a+1≥0,解得
故填:
此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.
12、1
【解析】
∵AM=AC,BN=BC,∴AB是△ABC的中位线,
∴AB=MN=1m,
故答案为1.
13、360°
【解析】
根据多边形的外角和是360°即可求出答案.
【详解】
∵任意多边形的外角和都是360°,
∴正十边形的外交和是360°,
故答案为:360°.
此题考查多边形的外角和定理,熟记定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)众数在4.85≤x<5.15的范围内,中位数在4.85≤x<5.15的范围内;(2)八年级视力正常的学生约有600人;(3)八年级1000名学生平均视力为4.1.
【解析】
(1)根据众数和中位数的定义,就是出现次数最多的数和中间的数(中间两数的平均数),据此即可判断;
(2)利用总人数1000乘以对应的比例即可求解;
(3)根据用样本估计总体解答即可.
【详解】
(1)众 数 在4.85≤x<5.15的范围内,
中位数在4.85≤x<5.15的范围内;
(2)依题意,八年级视力正常的学生约有人;
(3)依题意,抽样调查150名学生的平均视力为
,
由于可以用样本估计总体,
因此得到八年级1000名学生平均视力为4.1.
本题考查读频数分布表的能力和利用统计图表获取信息的能力;利用统计图表获取信息时,必须认真观察、分析、研究统计图表,才能作出正确的判断和解决问题.
15、整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.
【解析】
整理数据:根据八年级抽取10名学生的成绩,可得;
分析数据:根据题目给出的数据,利用众数的定义,中位数的定义求出即可;
得出结论:根据给出的平均数和方差分别进行分析,即可得出答案.
【详解】
解:整理数据:八年级段1人,段1人
分析数据,由题意,可知94分出现次数最多是4次,所以七年级10名学生的成绩众数是94,
将八年级10名学生的成绩从小到大排列为:84,88,93,93,93,94,97,98,98,99,
中间两个数分别是93,94,(93+94)÷2=93.5,
所以八年级10名学生的成绩中位数是93.5;
得出结论:认为八年级学生大赛的成绩比较好.
理由如下:八年级学生大赛成绩的平均数较高,表示八年级学生大赛的成绩较好;
八年级学生大赛成绩的方差小,表示八年级学生成绩比较集中,整体水平较好.
故答案为:整理数据:八年级段1人,段1人;分析数据:七年级众数94,八年级中位数93.5;得出结论:八年级学生大赛的成绩比较好,见解析.
本题考查平均数、中位数、众数、方差的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.
16、,.
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.
详解:原式=,
当a=1时,原式=.
点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.
17、(1)详见解析;(2)
【解析】
(1)根据矩形的性质和角平分线的性质可得∠BEC=∠BCE,可得BE=BC,则△BEC是等腰三角形;(2)根据勾股定理可求BE的长,即可求BC的长.
【详解】
解:(1)△BEC是等腰三角形,
∵在矩形ABCD中,AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠BED,
∴∠BEC=∠DEC,
∴∠BEC=∠BCE,
∴BE=BC,
∴△BEC是等腰三角形
(2)在矩形ABCD中,∠A=90°,且∠ABE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB=2,
∴BE=
由(1)知BC=BE,
∴BC=
本题考查了矩形的性质,等腰三角形的性质,勾股定理,熟练运用矩形的性质是本题的关键.
18、(1)y=x,见解析;y=2x-3,见解析;(2)(3,3);(3)见解析.
【解析】
(1)把当k=1,k=2时,分别代入求一次函数的解析式即可,
(2)利用k(x-3)=y-3,可得无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)先求出直线y=kx+k-2(k≠0)无论k取何值,总过点(-1,-2),再确定矩形对角线的交点即可画出直线.
【详解】
(1)当k=1时,直线l1的解析式为:y=x,
当k=2时,直线l2的解析式为y=2x-3,
如图1,
(2)∵y=kx+3(1-k),
∴k(x-3)=y-3,
∴无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)如图2,
∵直线y=kx+k-2(k≠0)
∴k(x+1)=y+2,
∴(k≠0)无论k取何值,总过点(-1,-2),
找出对角线的交点(1,1),通过两点的直线平分矩形ABCD的面积.
本题主要考查了一次函数综合题,涉及一次函数解析式及求点的坐标,矩形的性质,解题的关键是确定k(x+1)=y+2,无论k取何值(k≠0),总过点(-1,-2).
一、填空题(本大题共5个小题,每小题4分,共20分)
19、m<2且m≠1.
【解析】
根据一元二次根的判别式及一元二次方程的定义求解.
【详解】
解:∵关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,
∴m-1≠0,且△>0,即4-4(m-1)>0,解得m<2,
∴m的取值范围是:m<2且m≠1.
故答案为:m<2且m≠1.
本题考查根的判别式及一元二次方程的定义,掌握公式正确计算是解题关键.
20、.
【解析】
先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
【详解】
设△ABC的高为h,
∵S△ABC=BC•h=3h=,
∴h=.
∵ ,
∴点A的横坐标为 .
设点C(3,m),则点A(,m+),
∵点A、C在反比例函数y=(k>0,x>0)的图象上,
则k=3m=(m+),
解得 ,
则k=3m=,
故答案为:.
本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
21、或
【解析】
分逆时针旋转和顺时针旋转两种情况考虑:①顺时针旋转时,由点D的坐标利用正方形的性质可得出正方形的边长以及BD的长度,由此可得出点D′的坐标;②逆时针旋转时,找出点B′落在y轴正半轴上,根据正方形的边长以及BD的长度即可得出点D′的坐标.综上即可得出结论.
【详解】
解:分逆时针旋转和顺时针旋转两种情况(如图所示):
①顺时针旋转时,点B′与点O重合,
∵点D(4,3),四边形OABC为正方形,
∴OA=BC=4,BD=1,
∴点D′的坐标为(-1,0);
②逆时针旋转时,点B′落在y轴正半轴上,
∵OC=BC=4,BD=1,
∴点B′的坐标为(0,8),点D′的坐标为(1,8).
故答案为:(-1,0)或(1,8).
本题考查了正方形的性质,旋转的性质,以及坐标与图形变化中的旋转,分逆时针旋转和顺时针旋转两种情况考虑是解题的关键.
22、
【解析】
先把化简得到,然后把分式化简,再把看作整体,代入即可.
【详解】
∵,化简可得:,
∵,
把代入,得:
原式=;
故答案为:.
本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.
23、
【解析】
由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.
故答案为
二、解答题(本大题共3个小题,共30分)
24、(1)直线CD的解析式为:;直线AB的解析式为:;
(2)四边形ABDO的面积为7.5.
【解析】
(1)将B(﹣1,4)代入一次函数CD:与一次函数AB:,可以得到关于k、b的二元一次方程组,解方程组即可得到k、b的值,即可求出两条直线的解析式.
(2)由图可知四边形ABDO不是规则的四边形,利用割补法得到,分别算出△ABC与△DOC的面积即可算出答案.
【详解】
解:(1)∵一次函数CD:与一次函数AB:,都经过点B(﹣1,4),
∴将点B(﹣1,4)代入一次函数CD:与一次函数AB:,可得:
解得: ;
∴直线CD的解析式为:;直线AB的解析式为:;
(2)∵点A为直线AB与x轴的交点,令y=0得:解得:,
∴A(﹣3,0);
∵C为直线CD与x轴的交点,令y=0得:解得:,
∴C(3,0);
∵D为直线CD与y轴的交点,令x=0得y=3
∴D(0,3);
∴AC=6,OC=3,OD=3;
由图可知;
∴四边形ABDO的面积为7.5.
本题考查一次函数解析式的求法以及平面直角坐标系中图形面积的求法.会利用割补法求平面直角坐标系中图形面积是解题关键,在平面直角坐标系中求面积,一般以平行于坐标轴或在坐标轴上的边为底边,这样比较好算出图形的高.
25、(1)①△EBF是等边三角形,见解析;②DE=1;(2)S1-S2的值是定值,S1-S2=4.
【解析】
(1)①△EBF是等边三角形.连接BD,证明△ABE≌△DBF(ASA)即可解决问题.
②如图1中,作BH⊥AD于H.求出△ABE的面积,利用三角形的面积公式求出AE即可解决问题.
(2)如图2中,结论:S1-S2的值是定值.想办法证明:S1-S2=S△BCD即可.
【详解】
解:(1)①△EBF是等边三角形.理由如下:
如图1中,连接BD,
∵四边形ABCD是菱形,
∴AD=AB,
∵∠ADB=60°,
∴△ADB是等边三角形,△BDC是等边三角形,
∴AB=BD,∠ABD=∠A=∠BDC=60°,
∵∠ABD=∠EBF=60°,
∴∠ABE=∠DBF,
在△ABE和△DBF中,,
∴△ABE≌△DBF(ASA),
∴BE=BF,
∵∠EBF=60°,
∴△EBF是等边三角形.
②如图1中,作BH⊥AD于H.
在Rt△ABH中,BH=2,
∴S△ABD=•AD•BH=4,
∵S四边形ABFD=7,
∴S△BDF=S△ABE=3,
∴=3,
∴AE=3,
∴DE=AD=AE=1.
(2)如图2中,结论:S1-S2的值是定值.
理由:∵△BDC,△EBF都是等边三角形,
∴BD=BC,∠DBC=∠EBF=60°,BE=BF,
∴∠DBE=∠CBF,
∴△DBE≌△CBF(SAS),
∴S△BDE=S△BCF,
∴S1-S2=S△BDE+S△BOC-S△DOE=S△DOE+S△BOD+S△BOC-S△DOE=S△BCD=×42=4.
故S1-S2的值是定值.
本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
26、(1)正比例函数解析式为y=﹣2x;(2)m=﹣1;(3)点P不在这个函数图象上,理由见解析.
【解析】
(1)将点A的坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式;(2)将点B(m,m+3)代入所求的解析式,即可求得m的值;(3)把x=- 代入所求的解析式,求得y的值,比较即可.
【详解】
(1)由图可知点A(﹣1,2),代入y=kx得:
﹣k=2,k=﹣2,
则正比例函数解析式为y=﹣2x;
(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,
解得:m=﹣1;
(3)当x=﹣时,y=﹣2×(﹣)=3≠1,
所以点P不在这个函数图象上.
本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可.
题号
一
二
三
四
五
总分
得分
m
1
2
3
4
v
2.01
4.9
10.03
17.1
视力范围分组
组中值
频数
3.95≤x<4.25
4.1
20
4.25≤x<4.55
4.4
10
4.55≤x<4.85
4.7
30
4.85≤x<5.15
5.0
60
5.15≤x<5.45
5.3
30
合计
150
成绩x
人数 年级
七年级
1
1
5
3
八年级
4
4
统计量
年级
平均数
中位数
众数
方差
七年级
93.6
94
24.2
八年级
93.7
93
20.4
2024-2025学年扬州市江都区实验数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年扬州市江都区实验数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省微山县数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省微山县数学九上开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省济宁梁山县联考数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省济宁梁山县联考数学九上开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。