终身会员
搜索
    上传资料 赚现金

    山东省莱芜市实验学校2024年数学九年级第一学期开学预测试题【含答案】

    立即下载
    加入资料篮
    山东省莱芜市实验学校2024年数学九年级第一学期开学预测试题【含答案】第1页
    山东省莱芜市实验学校2024年数学九年级第一学期开学预测试题【含答案】第2页
    山东省莱芜市实验学校2024年数学九年级第一学期开学预测试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省莱芜市实验学校2024年数学九年级第一学期开学预测试题【含答案】

    展开

    这是一份山东省莱芜市实验学校2024年数学九年级第一学期开学预测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一元二次方程x2-9=0的解为( )
    A.x1=x2=3B.x1=x2=-3C.x1=3,x2=-3D.x1=,x2=-
    2、(4分)一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式( )
    A.16(1+2x)=25 B.25(1-2x)=16 C.25(1-x)²=16 D.16(1+x)²=25
    3、(4分)如图,在中,,,点为上一点,,于点,点 为的中点,连接,则的长为( )
    A.5B.4C.3D.2
    4、(4分)已知点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是( )
    A.a>1B.a<﹣1
    C.﹣1<a<1D.﹣1<a<0或0<a<1
    5、(4分)如图,在四边形中,,分别是的中点,则四边形一定是( )
    A.平行四边形B.矩形C.菱形D.正方形
    6、(4分)如图所示, 和都是边长为2的等边三角形,点在同一条直线上,连接,则的长为( )
    A.B.C.D.
    7、(4分)已知正比例函数y=3x的图象经过点(1,m),则m的值为( )
    A.B.3C.﹣D.﹣3
    8、(4分)函数y=kx+1与函数y=在同一坐标系中的大致图象是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)正n边形的一个外角的度数为60°,则n的值为 .
    10、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.
    11、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.
    12、(4分)甲、乙两人面试和笔试的成绩如下表所示:
    某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取________。
    13、(4分)如图,四边形ABCD是菱形,点A,B,C,D的坐标分别是(m,0),(0,n),(1,0),(0,2),则mn=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).
    (1)求直线AB的解析式;
    (2)求△ABP的面积(用含n的代数式表示);
    (3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
    15、(8分)如图,在梯形ABCD中,AD∥BC,点E在边BC上,DE∥AB,设.
    (1)用向量表示下列向量:;
    (2)求作: (保留作图痕迹,写出结果,不要求写作法)
    16、(8分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.
    (1)试判定四边形AEDF的形状,并证明你的结论.
    (2)若DE=13,EF=10,求AD的长.
    (3)△ABC满足什么条件时,四边形AEDF是正方形?
    17、(10分)先化简,再求值:÷(a+),其中a=﹣1.
    18、(10分)某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:
    八(1)班:88,91,92,93,93,93,94,98,98,100;
    八(2)班:89,93,93,93,95,96,96,98,98,99
    通过整理,得到数据分析表如下
    (1)求表中,,的值;
    (2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:= .
    20、(4分)如图,E是▱ABCD边BC上一点,连结AE,并延长AE与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D= ____________°
    21、(4分)分式方程的解是_____.
    22、(4分)某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:
    由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为1.
    23、(4分)将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)计算:﹣|-2|﹣(2﹣π)0+(﹣1)2017
    (2)先化简,再求值:2(a+)(a﹣)﹣a(a﹣)+6,其中a=﹣1
    25、(10分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍.求高铁列车从甲地到乙地的时间.
    老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:
    小组甲:设特快列车的平均速度为km/h.
    小组乙:高铁列车从甲地到乙地的时间为h.
    (1)根据题意,填写表格中空缺的量;
    (2)结合表格,选择一种方法进行解答.
    26、(12分)如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.
    (1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.
    ①求证:MA=MC;
    ②求MN的长;
    (2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    先变形得到x2=9,然后利用直接开平方法解方程.
    【详解】
    解:x2=9,
    ∴x=±1,
    ∴x1=1,x2=-1.
    故选:C.
    本题考查了直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
    2、C
    【解析】解:第一次降价后的价格为:15×(1﹣x),第二次降价后的价格为:15×(1﹣x)1.
    ∵两次降价后的价格为2元,∴15(1﹣x)1=2.故选C.
    3、D
    【解析】
    利用三角形的中位线定理即可求答,先证明出E点为CD的中点,F点为AC的中点,证出EF为AC的中位线.
    【详解】
    因为BD=BC,BE⊥CD,
    所以DE=CE,
    又因为F为AC的中点,
    所以EF为ΔACD的中位线,
    因为AB=10,BC=BD=6,
    所以AD=10-6=4,
    所以EF=×4=2,
    故选D
    本题考查三角形的中位线等于第三边的一半,学生们要熟练掌握即可求出答案.
    4、C
    【解析】
    试题解析:∵在反比例函数y=中,k>0,
    ∴在同一象限内y随x的增大而减小,
    ∵a-1<a+1,y1<y2
    ∴这两个点不会在同一象限,
    ∴a-1<0<a+1,解得-1<a<1
    故选C.
    【点睛】本题考察了反比例函数的性质,解题的关键是熟悉反比例函数的增减性,当k>0,在每一象限内y随x的增大而减小;当k<0,在每一象限内y随x的增大而增大.
    5、B
    【解析】
    根据三角形中位线定理,平行四边形的判定定理得到四边形EFGH为平行四边形,证明∠FGH=90°,根据矩形的判定定理证明.
    【详解】
    ∵E,F分别是边AB,BC的中点,
    ∴EF=AC,EF∥AC,
    同理,HG=AC,HG∥AC,
    ∴EF=HG,EF∥HG,
    ∴四边形EFGH为平行四边形,
    ∵F,G分别是边BC,CD的中点,
    ∴FG∥BD,

    ∴∠FGH=90°,
    ∴平行四边形EFGH为矩形,
    故选B.
    本题考查的是中点四边形,掌握三角形中位线定理,矩形的判定定理是解题的关键.
    6、B
    【解析】
    根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现,再进一步根据勾股定理进行求解.
    【详解】
    解:和都是边长为2的等边三角形,
    ,.




    故选:B.
    此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.
    7、B
    【解析】
    解:把点(1,m)代入y=3x,
    可得:m=3
    故选B
    8、A
    【解析】
    试题分析:根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.①当k>0时,y=kx+1与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+1与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.
    故选A.
    考点:反比例函数的图象;一次函数的图象.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    解:∵正n边形的一个外角的度数为10°,
    ∴n=310÷10=1.
    故答案为:1.
    10、
    【解析】
    根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度
    【详解】
    ∵四边形ABCD是菱形,
    ∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,
    ∴BC==5cm,
    ∴S菱形ABCD==×6×8=24cm2,
    ∵S菱形ABCD=BC×AE,
    ∴BC×AE=24,
    ∴AE=cm.
    故答案为: cm.
    此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
    11、3或6
    【解析】
    先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.
    【详解】
    解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,
    ∴∠DBC=∠BAO,
    由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,
    ∵点C(0,6),
    ∴OC=6,
    ∴BC=6-b,
    在△DBC和△BAO中,
    ∴△DBC≌△BAO(AAS),
    ∴BC=OA,
    即6-b=b,
    ∴b=3;
    ②当∠ADB=90°时,如图2,作AF⊥CE于F,
    同理证得△BDC≌△DAF,
    ∴CD=AF=6,BC=DF,
    ∵OB=b,OA=b,
    ∴BC=DF=b-6,
    ∵BC=6-b,
    ∴6-b=b-6,
    ∴b=6;
    ③当∠DAB=90°时,如图3,
    作DF⊥OA于F,
    同理证得△AOB≌△DFA,
    ∴OA=DF,
    ∴b=6;
    综上,b的值为3或6,
    故答案为3或6.
    本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.
    12、乙
    【解析】
    根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.
    【详解】
    甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
    乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
    因为乙的平均分数最高,
    所以乙将被录取.
    故答案为乙.
    此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
    13、1 .
    【解析】
    分析:根据菱形的对角线互相垂直平分得出OA=OC,OB=OD,得出m和n的值,从而得出答案.
    详解:∵四边形ABCD是菱形, ∴OA=OC,OB=OD, ∴m=-1,n=-1,∴mn=1.
    点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC,OB=OD是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).
    【解析】
    (1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;
    (2)利用即可求出结果;
    (3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。
    【详解】
    (1)设直线AB的解析式是y=kx+b
    把A(0,1),B(3,0)代入得:
    解得:
    ∴直线AB的解析式是:
    (2)过点A作AM⊥PD,垂足为M,则有AM=1,
    ∵x=1时,=,P在点D的上方,
    ∴PD=n﹣,
    由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
    ∴,
    ∴;
    (3)当S△ABP=2时,,解得n=2,∴点P(1,2).
    ∵E(1,0), ∴PE=BE=2,
    ∴∠EPB=∠EBP=45°.
    第1种情况,如图1,∠CPB=90°,BP=PC,
    过点C作CN⊥直线x=1于点N.
    ∵∠CPB=90°,∠EPB=45°,
    ∴∠NPC=∠EPB=45°.
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△BEP,∴PN=NC=EB=PE=2,
    ∴NE=NP+PE=2+2=4, ∴C(3,4).
    第2种情况,如图2, ∠PBC=90°,BP=BC,
    过点C作CF⊥x轴于点F.
    ∵∠PBC=90°,∠EBP=45°,
    ∴∠CBF=∠PBE=45°.
    又∵∠CFB=∠PEB=90°,BC=BP,
    ∴△CBF≌△PBE.
    ∴BF=CF=PE=EB=2,
    ∴OF=OB+BF=3+2=5, ∴C(5,2).
    3种情况,如图3,∠PCB=90°,
    ∴∠CPB=∠EBP=45°,
    ∴△PCB≌△ BEP,
    ∴PC=CB=PE=EB=2,∴C(3,2).
    ∴以PB为边在第一象限作等腰直角三角形BPC,
    综上所述点C的坐标是(3,4)或(5,2)或(3,2).
    本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质. 解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.
    15、(1),(2)见解析.
    【解析】
    (1)AD∥BC,DE∥AB,可证得四边形ABED是平行四边形,然后利用平行四边形法则与三角形法则求解即可求得答案;
    (2)首先作,连接AF,则即为所求.
    【详解】
    (1)∵AD∥BC,DE∥AB,
    ∴四边形ABED是平行四边形,



    ∴;
    (2)首先作,连接AF,则即为所求.
    此题考查平面向量,解题关键在于灵活运用向量的转化即可.
    16、(1)四边形AEDF是菱形,证明见解析;(2)24;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
    【解析】
    (1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故AO=AD=4,根据勾股定理得EO=3,从而得到EF=6;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.
    【详解】
    (1)四边形AEDF是菱形,
    ∵AD平分∠BAC,
    ∴∠1=∠2,
    又∵EF⊥AD,
    ∴∠AOE=∠AOF=90°
    ∵在△AEO和△AFO中
    ∵,
    ∴△AEO≌△AFO(ASA),
    ∴EO=FO,
    ∵EF垂直平分AD,
    ∴EF、AD相互平分,
    ∴四边形AEDF是平行四边形
    又EF⊥AD,
    ∴平行四边形AEDF为菱形;
    (2)∵EF垂直平分AD,AD=8,
    ∴∠AOE=90°,AO=4,
    在RT△AOE中,∵AE=5,
    ∴EO==3,
    由(1)知,EF=2EO=6;
    (3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;
    ∵∠BAC=90°,
    ∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).
    本题考查了菱形的判定和正方形的判定,解题的关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.
    17、,
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算.
    【详解】
    解:
    将代入上式有
    原式=.
    故答案为:;.
    本题主要考查了分式的化简求值和二次根式的运算,其中熟练掌握分式混合运算法则是解题的关键.
    18、(1),,;(2)见解析;
    【解析】
    (1)根据平均数的计算公式,求出八1班的平均分,得出的值,依据中位数的求法求得八2班的中位数,求得,看八2班成绩出现次数最多的,求得的值;
    (2)通过观察比较,发现从平均数、方差上对于八2班有利,可以从这两个方面,提出支持的理由.
    【详解】
    解:(1)八(1)班的平均数:,
    八(2)班成绩共10个数据,从小到大排列后,95、96处于之间,所以,是中位数,
    八(2)班成绩共10个数据,其中93出现三次,出现次数最多,众数是93,
    答:表中,,.
    (2)八2班的平均分高于八1班,因此八2班成绩较好;
    八2班的方差比八1班的小,因此八2班比八1班稳定.
    考查平均数、中位数、众数、方差的意义及求法,理解并掌握各个统计量所反映一组数据的集中趋势或离散程度,则有利于对数据做出分析,做出判断.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    分析:.
    20、1
    【解析】
    利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=1°,利用平行四边形对角相等得出即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠F=∠BAE=50°,.
    ∵AB=AE,
    ∴∠B=∠AEB=1°,
    ∴∠D=∠B=1°.
    故答案是:1.
    此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
    21、
    【解析】
    两边都乘以x(x-1),化为整式方程求解,然后检验.
    【详解】
    原式通分得:
    去分母得:
    去括号解得,
    经检验,为原分式方程的解
    故答案为
    本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
    22、12.2
    【解析】
    由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.
    【详解】
    解:由题意可得:y=111-8t,
    当y=1时,1=111-8t
    解得:t=12.2.
    故答案为:12.2.
    本题考查函数关系式.注意贮满111L汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t的值.
    23、 (-1,1).
    【解析】
    解:过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,
    因为ΔOAB是等腰直角三角形,所以有OC=BC=AC=1,
    ∠AOB=∠AOB′=45°,
    则点A的坐标是(1,1),
    OA=,又∠A′OB′=45°,
    所以∠A′OD=45°,OA′=,
    在RtΔA′OD中,cs∠A′OD= ,
    所以OD=1,A′D=1,所以点A′的坐标是(-1,1).
    考点:1、旋转的性质;2、等腰三角形的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)﹣1;(2)原式=a2+a=5﹣3.
    【解析】
    (1)根据二次根式的性质、绝对值的性质、零指数幂的性质及乘方的定义分别计算各项后,再合并即可;(2)先把代数式2(a+)(a﹣)﹣a(a﹣)+6化为最简,再代入求值即可.
    【详解】
    (1)原式=3﹣2﹣×1-1
    =﹣﹣1
    =﹣1;
    (2)原式=2a2﹣6﹣a2+a+6
    =a2+a
    当a=﹣1时,原式=(﹣1)2+(﹣1)=5﹣3.
    本题题考查了实数及二次根式的运算,熟练掌握运算法则是解本题的关键.
    25、(1)见解析;(2)5h.
    【解析】
    (1)根据两车速度之间的关系及时间=路程÷速度(速度=路程÷时间),即可找出表格中空缺的量;
    (2)任选一种方法,利用乘高铁列车从甲地到乙地比乘特快列车少用9h(或高铁列车的平均行驶速度是特快列车的2.8倍),即可得出分式方程,解之经检验后即可得出结论.
    【详解】
    解:(1)补全表格如下:
    小组甲:设特快列车的平均速度为km/h.
    小组乙:高铁列车从甲地到乙地的时间为h.
    (2)选择小组甲:由题可得,,
    解得,经检验,x是原分式方程的解,符合题意.
    则.
    故高铁列车从甲地到乙地的时间为5h.
    选择小组乙:由题可得,
    解得,经检验y是原分式方程的解,符合题意.
    故高铁列车从甲地到乙地的时间为5h.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    26、(1)①见解析;②;(2)△BEG的面积为48﹣6或48+6
    【解析】
    (1)①由矩形的性质得出,得出,由旋转的性质得:,证出,即可得出;
    ②设,则,在中,由勾股定理得出方程,解得:,在中,由勾股定理得出,得出,证出,得出即可;
    (2)分情况讨论:①过点作于,证明,得出,,在中,由勾股定理得出,得出,得出,得出的面积的面积;
    ②同①得:,,得出,得出的面积的面积即可.
    【详解】
    (1)①证明:四边形是矩形,


    由旋转的性质得:,


    ②解:设,则,
    在中,,
    解得:,
    在中,,



    又,


    (2)解:分情况讨论:
    ①如图2所示:过点作于,则,
    在和中,,

    ,,
    在中,,


    的面积的面积;
    ②如图3所示:
    同①得:,,

    的面积的面积;
    综上所述,的面积为或.
    本题是四边形综合题目,考查了矩形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、三角形面积、分类讨论等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.
    题号





    总分
    得分
    批阅人
    候选人


    测试成绩(百分制)
    面试成绩
    86
    92
    笔试成绩
    90
    83
    班级
    最高分
    平均分
    中位数
    众数
    方差
    八(1)班
    100
    93
    93
    12
    八(2)班
    99
    95
    8.4
    t(小时)
    1
    1
    2
    3
    y(升)
    111
    92
    84
    76
    时间/h
    平均速度/(km/h)
    路程/km
    高铁列车
    1400
    特快列车
    1400
    时间/h
    平均速度/(km/h)
    路程/km
    高铁列车
    1400
    特快列车
    1400
    时间/h
    平均速度/(km/h)
    路程/km
    高铁列车
    1400
    特快列车
    1400
    时间/h
    平均速度/(km/h)
    路程/km
    高铁列车
    1400
    特快列车
    1400

    相关试卷

    莱芜市2025届数学九年级第一学期开学质量跟踪监视试题【含答案】:

    这是一份莱芜市2025届数学九年级第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东省数学九年级第一学期开学预测试题【含答案】:

    这是一份2025届山东省数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。

    2025届山东省莱芜市名校数学九上开学达标测试试题【含答案】:

    这是一份2025届山东省莱芜市名校数学九上开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map