年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省德州临邑县联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】

    山东省德州临邑县联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】第1页
    山东省德州临邑县联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】第2页
    山东省德州临邑县联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省德州临邑县联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份山东省德州临邑县联考2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在Rt△ABC中,∠C=90°,BC=4,AB=6,点D是边BC上的动点,以AB为对角线的所有▱ADBE中,DE的最小值为( )
    A.2B.4C.6D.2
    2、(4分)下列交通标志中、既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    3、(4分)在同一平面直角坐标系中,函数与的图象可能是( )
    A. B.
    C. D.
    4、(4分)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )
    A.平均数B.中位数C.众数D.方差
    5、(4分)下列图形均是一些科技创新公司标志图,其中是中心对称图形的是( )
    A.B.C.D.
    6、(4分)如图所示图形中既是中心对称图形,又能镶嵌整个平面的有( )
    A.①②③④B.①②③C.②③D.③
    7、(4分)下列计算正确的是( )
    A.B.2C.()2=2D.=3
    8、(4分)如图,▱ABCD中,对角线AC,BD相交于点O,OA=3,若要使平行四边形ABCD为矩形,则OB的长度为( )
    A.4B.3C.2D.1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,EF⊥AD,将平行四边形ABCD沿着EF对折.设∠1的度数为n°,则∠C=______.(用含有n的代数式表示)
    10、(4分)如图,直线y=-x-与x,y两轴分别交于A,B两点,与反比例函数y=的图象在第二象限交于点C.过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的纵坐标为___.
    11、(4分)已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.
    12、(4分)若,则=_____.
    13、(4分)反比例函数 y=的图象同时过 A(-2,a)、B(b,-3)两点,则(a-b)2=__.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在四边形中,,是的中点,,,于点.
    (1)求证:四边形是菱形;
    (2)若,,求的长.
    15、(8分)在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列)
    16、(8分)如图,在平行四边形中,分别为边长的中点,连结.若,则四边形是什么特殊四边形?请证明你的结论.
    17、(10分)如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.
    求证:(1)四边形BFDE是平行四边形;
    (2)AE=CF.
    18、(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元
    (1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?
    (2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在直角坐标系中,、两点的坐标分别为和,将一根新皮筋两端固定在、两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形,若反比例函数的图像恰好经过点,则的值______.
    20、(4分)若数据,,1,的平均数为0,则__________.
    21、(4分)在平面直角坐标系xOy中,第三象限内有一点A,点A的横坐标为﹣2,过A分别作x轴、y轴的垂线,垂足为M、N,矩形OMAN的面积为6,则直线MN的解析式为_____.
    22、(4分)如图,在□ABCD中,对角线AC和BD交于点O,点E为AB边上的中点,OE=2.5cm,则AD=________cm。
    23、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,点是原点,四边形是菱形,点的坐标为,点在轴的负半轴上,直线与轴交于点,与轴交于点.
    (1)求直线的解析式;
    (2)动点从点出发,沿折线方向以1个单位/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.
    25、(10分)如图,将沿过点的直线折叠,使点落到边上的处,折痕交边于点,连接.
    (1)求证:四边形是平行四边形;
    (2)若平分,求证:.
    26、(12分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
    (1)求证:△AEF≌△DEB;
    (2)求证:四边形ADCF是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由条件可知BD∥AE,则可知当DE⊥BC时,DE有最小值,可证得四边ACDE为矩形,可求得答案.
    【详解】
    ∵四边形ADBE为平行四边形,
    ∴AE∥BC,
    ∴当DE⊥BC时,DE有最小值,如图,
    ∵∠ACB=90°,
    ∴四边形ACDE为矩形,
    ∴DE=AC,
    在Rt△ABC中,由勾股定理可求得AC==2,
    ∴DE的最小值为2,
    故选:D.
    本题主要考查平行四边形的性质和矩形的判定和性质,确定出DE取最小值时的位置是解题的关键.
    2、A
    【解析】
    根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    A、既是轴对称图形又是中心对称图形,故本选项正确;
    B、不是轴对称图形,也不是中心对称图形,故本选项错误;
    C、不是轴对称图形,也不是中心对称图形,故本选项错误;
    D、是轴对称图形,不是中心对称图形,故本选项错误.
    故选:A.
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键. 在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    3、C
    【解析】
    根据一次函数及二次函数的图像性质,逐一进行判断.
    【详解】
    解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;
    B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;
    C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴在y轴右侧,故此选项正确;
    D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;
    故选:C.
    本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.
    4、B
    【解析】
    由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.
    【详解】
    11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,
    故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
    故选B.
    本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
    5、A
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.
    【详解】
    A、是中心对称图形,故此选项正确;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误;
    故选A.
    此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
    6、C
    【解析】
    当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.符合此条件的中心对称图形即可选.
    【详解】
    正三角形不是中心对称图形,圆是中心对称图形但不能镶嵌,正六边形和平行四边形是中心对称图形也能镶嵌.
    故选C
    判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.
    7、C
    【解析】
    利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.
    【详解】
    解:A、>3>,
    ∴选项A不正确;
    B、,
    ∴选项B不正确;
    C、()2=2,
    ∴选项C正确;
    D、=3,
    ∴选项D不正确.
    故选C.
    本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.
    8、B
    【解析】
    试题解析:假如平行四边形ABCD是矩形,
    OA=OC,OB=OD,AC=BD,
    ∴OA=OB=1.
    故选B.
    点睛:对角线相等的平行四边形是矩形.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、180°﹣n°
    【解析】
    由四边形ABCD是平行四边形,可知∠B=180°﹣∠C;再由由折叠的性质可知,∠GHC=∠C,即可得∠GHB=180°﹣∠C;根据三角形的外角的性质可知∠1=∠GHB+∠B=360°﹣2∠C,即可得360°﹣2∠C=n°,由此求得∠C=180°﹣n°.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠B=180°﹣∠C,
    由折叠的性质可知,∠GHC=∠C,
    ∴∠GHB=180°﹣∠C,
    由三角形的外角的性质可知,∠1=∠GHB+∠B=360°﹣2∠C,
    ∴360°﹣2∠C=n°,
    解得,∠C=180°﹣n°,
    故答案为:180°﹣n°.
    本题考查的是平行四边形的性质及图形翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.
    10、
    【解析】
    作CH⊥x轴于H,如图,先利用一次函数解析式确定B(0,-),A(-3,0),再利用三角函数的定义计算出∠OAB=30°,则∠CAH=30°,设D(-3,t),则AC=AD=t,接着表示出CH=AC=t,AH=CH=t得到C(-3-t,t),然后利用反比例函数图象上点的坐标特征得到(-3-t)•t=3t,最后解方程即可.
    【详解】
    作CH⊥x轴于H,如图,
    当x=0时,y=-x-=-,则B(0,-),
    当y=0时,-x-=0,解得x=-3,则A(-3,0),
    ∵tan∠OAB=,
    ∴∠OAB=30°,
    ∴∠CAH=30°,
    设D(-3,t),则AC=AD=t,
    在Rt△ACH中,CH=AC=t,AH=CH=t,
    ∴C(-3-t,t),
    ∵C、D两点在反比例函数图象上,
    ∴(-3-t)•t=3t,解得t=2,
    即D点的纵坐标为2.
    故答案为2.
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    11、1
    【解析】
    分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.
    【详解】
    解:当m=1时,原方程为2x+1=1,
    解得:x=﹣,
    ∴m=1符合题意;
    当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,
    ∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,
    解得:m≤且m≠1.
    综上所述:m≤.
    故答案为:1.
    本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.
    12、
    【解析】
    设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.
    【详解】
    解:设=m,
    ∴x=3m,y=4m,z=5m,
    代入原式得:.
    故答案为.
    本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.
    13、
    【解析】
    先将A(-2,a)、B(b,-3)两点的坐标代入反比例函数的解析式y=,求出a、b的值,再代入(a-b)2,计算即可.
    【详解】
    ∵反比例函数y=的图象同时过A(−2,a)、B(b,−3)两点,
    ∴a= =−1,b= = ,
    ∴(a−b) 2=(−1+) 2= .
    故答案为.
    此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2).
    【解析】
    (1)先证明四边形是平行四边形,再由直角三角形斜边的中线等于斜边的一半可得,从而可证四边形是菱形;
    (2)作,垂足为,根据勾股定理求出BC的长,再利用菱形的性质和三角形的面积公式解答即可.
    【详解】
    解:(1),,
    四边形是平行四边形,
    ,是的中点,

    是菱形;
    (2)作,垂足为,
    ,,,
    .

    .
    四边形是菱形,


    .
    此题考查菱形的判定和性质、直角三角形斜边的中线等于斜边的一半、勾股定理、平行四边形的判定,证明四边形AECD是菱形是解题的关键.
    15、这四个数为或 或.
    【解析】
    分析:根据中位数的定义得出第二个数和第三个数的和是8,再根据这四个数是不相等的正整数,得出这两个数是3、5或2、6,再根据这些数都是正整数得出第一个数是2或1,再把这四个数相加即可得出答案.
    详解:∵中位数是4,最大的数是8,
    ∴第二个数和第三个数的和是8,
    ∵这四个数是不相等的正整数,
    ∴这两个数是3、5或2、6,
    ∴这四个数是1,3,5,8或2,3,5,8或1,2,6,8,
    故答案为:1, 2, 6, 8或1, 3, 5, 8 或2, 3, 5, 8.
    点睛:此题考查了中位数,掌握中位数的概念是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    16、四边形是菱形,证明详见解析
    【解析】
    根据平行四边形性质得出DC=AB,DC//AB,推出BE=DF,得出平行四边形BFDE,根据直角三角形斜边上中线得出DE=BE,根据菱形的判定推出即可.
    【详解】
    解:四边形是菱形.
    证明:∵四边形是平行四边形,

    ∵点是的中点,;

    ∴四边形是平行四边形;
    又;
    ∴平行四边形是菱形.
    本题考查了平行四边形的性质和判定,菱形的判定,直角三角形斜边上中线等知识点的应用,关键是证出DE=BE和推出平行四边形BEDF.
    17、(1)见解析;(2)见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,可得AD∥BC,又BE∥DF,可证四边形BFDE是平行四边形;
    (2)由四边形ABCD是平行四边形,可得AD=BC ,又ED=BF ,从而AD-ED=BC-BF,即AE=CF.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AD∥BC,即DE∥BF .
    ∵BE∥DF,
    ∴四边形BFDE是平行四边形;
    (2)∵四边形ABCD是平行四边形,
    ∴AD=BC ,
    ∵四边形BFDE是平行四边形,
    ∴ED=BF ,
    ∴AD-ED=BC-BF,
    即AE=CF.
    本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.
    18、 (1)A型设备最多购买5台;(2)A型设备至少要购买4台.
    【解析】
    (1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.
    (2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.
    【详解】
    (1)设购买A型号的x台,购买B型号的为(10﹣x)台,
    则:12x+10(10﹣x)≤110,
    解得:x≤5,
    答:A型设备最多购买5台;
    (2)设购买A型号的a台,购买B型号的为(10﹣a)台,
    可得:240a+180(10﹣a)≥2040,
    解得:a≥4,
    ∴A型设备至少要购买4台.
    本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、48
    【解析】
    先根据已知条件得到OA=8,OB=6,由勾股定理得到根据矩形的性质即可得到结论.
    【详解】
    解:∵A、B两点的坐标分别为(0,8)和(6,0),
    ∴OA=8,OB=6,
    ∵四边形AOBC是矩形,
    ∴AC=OB=6,OA=BC=8,
    ∴C(6,8),
    反比例函数的图像恰好经过点,
    ∴k=6,
    本题考查了矩形的性质,坐标与图形性质,熟练掌握矩形的性质是解题的关键.
    20、1
    【解析】
    根据平均数的公式列式计算即可.
    【详解】
    解:=0,
    得a=1,
    故答案为:1.
    本题主要考查了平均数的计算,要熟练掌握方法.
    21、y=﹣x﹣1
    【解析】
    确定M、N点的坐标,再利用待定系数法求直线MN的关系式即可.
    【详解】
    由题意得:OM=2,∴M(-2,0)
    ∵矩形OMAN的面积为6,
    ∴ON=6÷2=1,
    ∵点A在第三象限,
    ∴N(0,-1)
    设直线MN的关系式为y=kx+b,(k≠0)将M、N的坐标代入得:
    b=-1,-2k+b=0,
    解得:k=-,b=-1,
    ∴直线MN的关系式为:y=-x-1
    故答案为:y=-x-1.
    考查待定系数法求一次函数的关系式,确定点的坐标是解决问题的关键.
    22、5
    【解析】
    由平行四边形的对角线互相平分得AO=OC,结合E为AB的中点,则OE为△ABC的中位线,得到BC=2OE,从而求出BC的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,
    又∵E为AB的中点,
    ∴OE为△ABC的中位线 ,
    ∴BC=2OE=2×2.5=5cm
    故答案为:5.
    此题主要考查中位线的性质,解题的关键是熟知中位线的判断与性质.
    23、y=2x-1
    【解析】
    根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
    【详解】
    解:设平移后直线的解析式为y=2x+b.
    把(5,1)代入直线解析式得1=2×5+b,
    解得 b=-1.
    所以平移后直线的解析式为y=2x-1.
    故答案为:y=2x-1.
    本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2).
    【解析】
    (1)由点A的坐标,求出OA的长,根据四边形ABCO为菱形,利用菱形的四条边相等得到OC=OA,求出OC的长,即可确定出C的坐标,设直线AC解析式为y=kx+b,将A与C代入求出k与b的值,即可确定出直线AC的解析式;
    (2) 对于直线AC解析式,令x=0,得到y的值,即为OE的长,由OD-OE求出DE的长, 当点P在线段AB上时,由P的速度为1个单位/秒,时间为t秒,表示出AP,由AB-AP表示出PB,△PEB以PB为底边,DE为高,表示出S与t的关系式,并求出t的范围即可;当P在线段BC上时,设点E到直线BC的距离h,由P的速度为1个单位/秒,时间为t秒,则 BP的长为t-5,△ABC的面积为菱形面积(OC为底,OD为高)的一半,△AEB的面积以AB为底,DE为高,△BEC以BC为底边,h为高,利用等量关系式,建立方程,解出h的值,△PEB以BP为底边,h为高,表示出S与t的关系式,并求出t的范围即可.
    【详解】
    解:(1)∵点的坐标为,
    ∴,在中,根据勾股定理,
    ∴,
    ∵菱形,
    ∴,
    ∴,
    设直线的解析式为:,
    把代入得:
    解得,
    ∴;
    (2)令时,得:,则点,
    ∴,
    依题意得:,
    ①当点在直线上运动时,即
    当时,
    ∴,
    ②当点在直线上时,即当时,∴;设点E到直线的距离,
    ∴,
    ∴,
    ∴,
    ∴,
    综上得:.
    故答案为(1);(2).
    此题属于一次函数综合题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,勾股定理,菱形的性质,利用了数形结合及分类讨论的思想,熟练掌握待定系数法是解本题的关键.
    25、(1)详见解析;(1)详见解析.
    【解析】
    (1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形;
    (1)利用平行线的性质结合勾股定理得出答案.
    【详解】
    (1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,
    ∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E,
    ∵DE∥AD′,
    ∴∠DEA=∠EAD′,
    ∴∠DAE=∠EAD′=∠DEA=∠D′EA,
    ∴∠DAD′=∠DED′,
    ∴四边形DAD′E是平行四边形,
    ∴DE=AD′,
    ∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴CE ∥D′B,
    ∴四边形BCED′是平行四边形;
    (1)∵BE平分∠ABC,
    ∴∠CBE=∠EBA,
    ∵AD∥BC,
    ∴∠DAB+∠CBA=180°,
    ∵∠DAE=∠BAE,
    ∴∠EAB+∠EBA=90°,
    ∴∠AEB=90°,
    ∴AB1=AE1+BE1.
    此题主要考查了平行四边形的判定与性质以及勾股定理等知识,得出四边形DAD′E是平行四边形是解题关键.
    26、 (1)见解析;(2)见解析.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    【详解】
    证明:(1)∵AF∥BC
    ∴∠AFE=∠DBE
    ∵E是AD中点,
    ∴AE=DE
    在△AEF和DEB中
    ∴△AEF≌△DEB(AAS)
    (2)在Rt△ABC中,D是BC的中点,
    所以,AD=BD=CD
    又AF∥DB,且AF=DB,
    所以,AF∥DC,且AF=DC,
    所以,四边形ADCF是菱形.
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    湖北省浠水县联考2024-2025学年九上数学开学质量跟踪监视试题【含答案】:

    这是一份湖北省浠水县联考2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省济宁微山县联考数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份2024年山东省济宁微山县联考数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年浙江地区九上数学开学质量跟踪监视模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map