搜索
    上传资料 赚现金
    英语朗读宝

    内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】

    内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】第1页
    内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】第2页
    内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】

    展开

    这是一份内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为( )
    A.1B.﹣2C.﹣1D.2
    2、(4分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
    A.8B.6C.4D.2
    3、(4分)在平面直角坐标系中,函数y=﹣2x+|a|+1的大致图象是( )
    A.B.
    C.D.
    4、(4分)函数y=中,自变量x的取值范围是( )
    A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0
    5、(4分)如图是自动测温仪记录的图象,它反映了武汉的冬季某天气温随时间的变化而变化的情况,下列说法错误的是( )
    A.这一天凌晨4时气温最低
    B.这一天14时气温最高
    C.从4时至14时气温呈上升状态(即气温随时间增长而上升)
    D.这一天气温呈先上升后下降的趋势
    6、(4分)下列调查适合普查的是( )
    A.调查2011年3月份市场上西湖龙井茶的质量
    B.了解萧山电视台188热线的收视率情况
    C.网上调查萧山人民的生活幸福指数
    D.了解全班同学身体健康状况
    7、(4分)小亮在同一直角坐标系内作出了和的图象,方程组的解是( )
    A.B.C.D.
    8、(4分)如果一组数据为1,5,2,6,2,则这组数据的中位数为( )
    A.6B.5C.2D.1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)平行四边形ABCD中,若,=_____.
    10、(4分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_______.
    11、(4分)如图,在中,,平分,点为中点,则_____.
    12、(4分)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=,CD=5,那么∠D的度数是_____.
    13、(4分)直线y=2x﹣4与x轴的交点坐标是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)甲,乙两人沿汀江绿道同地点,同方向运动,甲跑步,乙骑车,两人都匀速前行,若甲先出发60s,乙骑车追赶且速度是甲的两倍在运动的过程中,设甲,乙两人相距,乙骑车的时间为,y是t的函数,其图象的一部分如图所示,其中.
    (1)甲的速度是多少;
    (2)求a的值,并说明A点坐标的实际意义;
    (3)当时,求y与t的函数关系式.
    15、(8分)对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于( )
    A.﹣1B.±2C.1D.±1
    16、(8分)为了考察包装机包装糖果质量的稳定性,从中抽取10袋,测得它们的实际质量(单位:g)如下:
    505,504,505,498,505,502,507,505,503,506
    (1)求平均每袋的质量是多少克.
    (2)求样本的方差.
    17、(10分)如图,直线l1:y1=−x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
    (1)求两直线交点D的坐标;
    (2)求△ABD的面积;
    (3)根据图象直接写出y1>y2时自变量x的取值范围.
    18、(10分)如图,▱ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.
    (1)求证:四边形BFDE是平行四边形;
    (2)若∠AEB=68°,求∠C.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.
    20、(4分)如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠= _________度.
    21、(4分)如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=_____.
    22、(4分)函数的自变量x的取值范围是 .
    23、(4分) 的计算结果是___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知在中,是边上的一点,的角平分线交于点,且,求证:.
    25、(10分)已知:如图,,是□ABCD的对角线上的两点,,求证:.
    26、(12分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
    (1)求证:△ADE≌△ABF;
    (2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
    (3)若BC=8,DE=6,求△AEF的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.
    【详解】
    解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.
    故选:C.
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    2、C
    【解析】
    过点P作PE⊥BC于E,
    ∵AB∥CD,PA⊥AB,
    ∴PD⊥CD,
    ∵BP和CP分别平分∠ABC和∠DCB,
    ∴PA=PE,PD=PE,
    ∴PE=PA=PD,
    ∵PA+PD=AD=8,
    ∴PA=PD=1,
    ∴PE=1.
    故选C.
    3、A
    【解析】
    确定一次函数的比例系数的符号后利用其性质确定正确的选项即可.
    【详解】
    函数y=-2x+|a|+1中k=-2<0,b=|a|+1>0,
    所以一次函数的图象经过一、二、四象限,
    故选A.
    考查了一次函数的性质,了解一次函数的图象与系数的关系是解答本题的关键,难度不大.
    4、B
    【解析】
    试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.
    解:由题意得,x﹣1≥0且x≠0,
    ∴x≥1.
    故选:B.
    5、D
    【解析】
    根据气温变化图,分析变化趋势和具体数值,即可求出答案.
    【详解】
    解:A.这一天凌晨4时气温最低为-3℃,故本选项正确;
    B.这一天14时气温最高为8℃,故本选项正确;
    C.从4时至14时气温呈上升状态,故本选项正确;
    D.这一天气温呈先下降,再上升,最后下降的趋势,故本选项错误;
    故选:D.
    本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.
    6、D
    【解析】
    解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;
    D工作量小,没有破坏性,适合普查.
    故选D.
    7、B
    【解析】
    由数形结合可得,直线和的交点即为方程组
    的解,可得答案.
    【详解】
    解:由题意得:直线和的交点即为方程组
    的解,可得图像上两直线的交点为(-2,2),
    故方程组的解为,
    故选B.
    本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
    8、C
    【解析】
    将这组数据是从小到大排列,找到最中间的那个数即可.
    【详解】
    将数据从小到大重新排列为:1,2,2,5,6,
    所以这组数据的中位数为:2,
    故答案为:C.
    此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、120°
    【解析】
    根据平行四边形对角相等求解.
    【详解】
    平行四边形ABCD中,∠A=∠C,又,
    ∴∠A=120°,
    故填:120°.
    此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
    10、﹣1≤m≤1
    【解析】
    此题涉及的知识点是根据平面直角坐标系建立不等式,先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.
    【详解】
    解:∵点M在直线y=﹣x上,
    ∴M(m,﹣m),
    ∵MN⊥x轴,且点N在直线y=x上,
    ∴N(m,m),
    ∴MN=|﹣m﹣m|=|2m|,
    ∵MN≤8,
    ∴|2m|≤8,
    ∴﹣1≤m≤1,
    故答案为﹣1≤m≤1.
    此题重点考查学生对于平面直角坐标系的性质,根据平面直角坐标系建立不等式,熟练掌握不等式计算方法是解题的关键.
    11、1
    【解析】
    根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.
    【详解】
    解:∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,
    ∴∠ADC=90°,点E为AC中点,
    ∴DE=AC=1,
    故答案为:1.
    本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
    12、60°或120°
    【解析】
    该题根据题意分为两种情况,首先正确画出图形,根据已知易得直角三角形DEC的直角边和斜边的长,然后利用三角函数,即可求解.
    【详解】
    ①如图1,
    过D作DE⊥BC于E,则∠DEC=∠DEB=90°,
    ∵AD∥BC,∠A=90°,
    ∴∠B=90°,
    ∴四边形ABED是矩形,
    ∴∠ADE=90°,AB=DE=,
    ∵CD=5,
    ∴sinC==,
    ∴∠C=60°,
    ∴∠EDC=30°,
    ∴∠ADC=90°+30°=120°;
    ②如图2,
    此时∠D=60°,
    即∠D的度数是60°或120°,
    故答案为:60°或120°.
    该题重点考查了三角函数的相关知识,解决该题的关键一是:能根据题意画出两种情况,二是:把该题转化为三角函数问题,从而即可求解.
    13、(2,0)
    【解析】
    与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.
    【详解】
    解:令,则,
    解得.
    所以,直线与x轴的交点坐标是.
    故填:.
    本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.
    三、解答题(本大题共5个小题,共48分)
    14、(1)甲的速度为;(2),A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;(3)当时,
    【解析】
    1根据图象中的数据和题意可以求得甲的速度;
    2根据甲的速度可以求得乙的速度,再根据图象和题意即可求得点A的坐标和写出点A表示的实际意义;
    3根据题意可以求得当t大于a时对应的函数解析式.
    【详解】
    (1)由题意可得,
    甲的速度为:,
    故答案为4;
    (2)由1知,乙的速度为8 ,
    依题意,可得
    解得,,
    点A的坐标为:,
    A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;
    (3)由题意知,
    当时,甲乙两人之间的距离是
    即直线上另一点的坐标为,
    当时,设y与t的函数关系式为:,
    直线过点,,

    解得:,
    当时,
    考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    15、D
    【解析】
    先解方程,求出方程的解,分为两种情况,当x2=2,x2=2时,当x2=2,x2=2时,根据题意求出即可.
    【详解】
    解方程x2﹣3x+2=0得x=2或x=2,
    当x2=2,x2=2时,x2⊗x2=22﹣2×2=﹣2;
    当x2=2,x2=2时,x2⊗x2=2×2﹣22=2.
    故选:D.
    考查解一元二次方程-因式分解法,注意分类讨论,不要漏解.
    16、(1)平均数为504;(2)方差为5.8.
    【解析】
    (1)根据算术平均数的定义计算可得;
    (2)根据方差的定义计算可得.
    【详解】
    (1)平均数:(5+4+5-2+5+2+7+5+3+6)+500=504
    (2)方差:(1+0+1+36+1+4+9+1+1+4)=5.8
    本题主要考查方差,解题的关键是掌握方差的定义和计算公式.
    17、(1)D点坐标为(4,3)(1)15;(3)x<4
    【解析】
    试题分析:(1)先得到两函数的解析式,组成方程组解求出D的坐标;(1)由y1=
    x+1可知,C点坐标为(0,1),分别求出△ABC和△ACD的面积,相加即可.(3)由图可直接得出y1>y1时自变量x的取值范围.
    试题解析:(1)将A(0,6)代入y1=−x+m得,m=6;将B(-1,0)代入y1=kx+1得,k=
    组成方程组得解得 故D点坐标为(4,3);
    (1)由y1=x+1可知,C点坐标为(0,1),S△ABD=S△ABC+S△ACD=×5×1+×5×4=15;
    (3)由图可知,在D点左侧时,y1>y1,即x<4时,出y1>y1.
    18、(1)见解析;(2)∠C=44°.
    【解析】
    (1)由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD是平行四边形,即可得出结论;
    (2)根据平行线的性质和角平分线的定义即可得到结论.
    【详解】
    (1)证明:在平行四边形ABCD中,AD∥BC,
    ∴∠AEB=∠CBE,
    又BE平分∠ABC,
    ∴∠ABE=∠EBC,
    ∴∠ABE=∠AEB,即AB=AE,
    同理CF=CD,
    又AB=CD,∴CF=AE,
    ∴BF=DE,
    ∴四边形EBFD是平行四边形;
    (2)解:∵∠AEB=68°,AD∥BC,
    ∴∠EBF=∠AEB=68°,
    ∵BE平分∠ABC,
    ∴∠ABC=2∠EBF=136°,
    ∴∠C=180°-∠ABC=44°.
    故答案为:(1)见解析;(2)∠C=44°.
    本题考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、16cm2
    【解析】
    根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.
    【详解】
    解:∵点A、B、C、D分别是四个正方形的中心
    ∴每一个阴影部分的面积等于正方形的
    ∴正方形重叠的部分(阴影部分)面积和
    故答案为:
    本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.
    20、10
    【解析】
    根据旋转的性质找到对应点、对应角进行解答.
    【详解】
    ∵△ABC绕点A逆时针旋转50°得到△AB′C′,
    ∴∠BAB′=50°,
    又∵∠BAC=70°,
    ∴∠CAB′=∠BAC-∠BAB′=1°.
    故答案是:1.
    本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.
    21、1
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴BC=AD=8,
    ∵点E、F分别是BD、CD的中点,
    ∴EF=BC=×8=1.
    故答案为1.
    此题考查了平行四边形的性质与三角形中位线的性质.熟练掌握相关性质是解题关键.
    22、.
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
    23、3.5
    【解析】
    原式=4-=3=3.5,
    故答案为3.5.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ABC,即可解题.
    【详解】
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴,
    ∴,即:,
    ∵,
    ∴.
    本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.
    25、详见解析.
    【解析】
    试题分析:根据平行四边形的性质得到AB=CD,AB∥CD,推出,根据垂平行线的性质得到,根据AAS可判定;根据全等三角形的性质即可得.
    试题解析:证明:∵四边形ABCD是平行四边形,
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    考点:平行四边形的性质;全等三角形的判定及性质.
    26、解:(1)见解析
    (2)A;90;
    (3)50
    【解析】
    试题分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF.
    (2)∵△ADE≌△ABF,∴∠BAF=∠DAE.
    而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°.
    ∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到.
    (3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
    【详解】
    解:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°.
    又∵点F是CB延长线上的点,∴∠ABF=90°.
    在△ADE和△ABF中,∵,
    ∴△ADE≌△ABF(SAS).
    (2)A;90.
    (3)∵BC=8,∴AD=8.
    在Rt△ADE中,DE=6,AD=8,∴.
    ∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
    ∴AE=AF,∠EAF=90°.
    ∴△AEF的面积=AE2=×100=50(平方单位).
    题号





    总分
    得分

    相关试卷

    内蒙古巴彦淖尔市名校2025届数学九上开学监测模拟试题【含答案】:

    这是一份内蒙古巴彦淖尔市名校2025届数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    内蒙古巴彦淖尔市临河区第二中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份内蒙古巴彦淖尔市临河区第二中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    内蒙古巴彦淖尔市临河区八校联盟2025届数学九上开学统考模拟试题【含答案】:

    这是一份内蒙古巴彦淖尔市临河区八校联盟2025届数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map