内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】
展开
这是一份内蒙古包头市、巴彦淖尔市2024-2025学年数学九上开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为( )
A.1B.﹣2C.﹣1D.2
2、(4分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8B.6C.4D.2
3、(4分)在平面直角坐标系中,函数y=﹣2x+|a|+1的大致图象是( )
A.B.
C.D.
4、(4分)函数y=中,自变量x的取值范围是( )
A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0
5、(4分)如图是自动测温仪记录的图象,它反映了武汉的冬季某天气温随时间的变化而变化的情况,下列说法错误的是( )
A.这一天凌晨4时气温最低
B.这一天14时气温最高
C.从4时至14时气温呈上升状态(即气温随时间增长而上升)
D.这一天气温呈先上升后下降的趋势
6、(4分)下列调查适合普查的是( )
A.调查2011年3月份市场上西湖龙井茶的质量
B.了解萧山电视台188热线的收视率情况
C.网上调查萧山人民的生活幸福指数
D.了解全班同学身体健康状况
7、(4分)小亮在同一直角坐标系内作出了和的图象,方程组的解是( )
A.B.C.D.
8、(4分)如果一组数据为1,5,2,6,2,则这组数据的中位数为( )
A.6B.5C.2D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)平行四边形ABCD中,若,=_____.
10、(4分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_______.
11、(4分)如图,在中,,平分,点为中点,则_____.
12、(4分)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=,CD=5,那么∠D的度数是_____.
13、(4分)直线y=2x﹣4与x轴的交点坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲,乙两人沿汀江绿道同地点,同方向运动,甲跑步,乙骑车,两人都匀速前行,若甲先出发60s,乙骑车追赶且速度是甲的两倍在运动的过程中,设甲,乙两人相距,乙骑车的时间为,y是t的函数,其图象的一部分如图所示,其中.
(1)甲的速度是多少;
(2)求a的值,并说明A点坐标的实际意义;
(3)当时,求y与t的函数关系式.
15、(8分)对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于( )
A.﹣1B.±2C.1D.±1
16、(8分)为了考察包装机包装糖果质量的稳定性,从中抽取10袋,测得它们的实际质量(单位:g)如下:
505,504,505,498,505,502,507,505,503,506
(1)求平均每袋的质量是多少克.
(2)求样本的方差.
17、(10分)如图,直线l1:y1=−x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
(1)求两直线交点D的坐标;
(2)求△ABD的面积;
(3)根据图象直接写出y1>y2时自变量x的取值范围.
18、(10分)如图,▱ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.
(1)求证:四边形BFDE是平行四边形;
(2)若∠AEB=68°,求∠C.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将5个边长都为4cm的正方形按如图所示的方法摆放,点A、B、C、D是正方形的中心,则正方形重叠的部分(阴影部分)面积和为_____.
20、(4分)如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠= _________度.
21、(4分)如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=_____.
22、(4分)函数的自变量x的取值范围是 .
23、(4分) 的计算结果是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知在中,是边上的一点,的角平分线交于点,且,求证:.
25、(10分)已知:如图,,是□ABCD的对角线上的两点,,求证:.
26、(12分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.
【详解】
解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.
故选:C.
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
2、C
【解析】
过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=1,
∴PE=1.
故选C.
3、A
【解析】
确定一次函数的比例系数的符号后利用其性质确定正确的选项即可.
【详解】
函数y=-2x+|a|+1中k=-2<0,b=|a|+1>0,
所以一次函数的图象经过一、二、四象限,
故选A.
考查了一次函数的性质,了解一次函数的图象与系数的关系是解答本题的关键,难度不大.
4、B
【解析】
试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.
解:由题意得,x﹣1≥0且x≠0,
∴x≥1.
故选:B.
5、D
【解析】
根据气温变化图,分析变化趋势和具体数值,即可求出答案.
【详解】
解:A.这一天凌晨4时气温最低为-3℃,故本选项正确;
B.这一天14时气温最高为8℃,故本选项正确;
C.从4时至14时气温呈上升状态,故本选项正确;
D.这一天气温呈先下降,再上升,最后下降的趋势,故本选项错误;
故选:D.
本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.
6、D
【解析】
解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;
D工作量小,没有破坏性,适合普查.
故选D.
7、B
【解析】
由数形结合可得,直线和的交点即为方程组
的解,可得答案.
【详解】
解:由题意得:直线和的交点即为方程组
的解,可得图像上两直线的交点为(-2,2),
故方程组的解为,
故选B.
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
8、C
【解析】
将这组数据是从小到大排列,找到最中间的那个数即可.
【详解】
将数据从小到大重新排列为:1,2,2,5,6,
所以这组数据的中位数为:2,
故答案为:C.
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、120°
【解析】
根据平行四边形对角相等求解.
【详解】
平行四边形ABCD中,∠A=∠C,又,
∴∠A=120°,
故填:120°.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.
10、﹣1≤m≤1
【解析】
此题涉及的知识点是根据平面直角坐标系建立不等式,先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.
【详解】
解:∵点M在直线y=﹣x上,
∴M(m,﹣m),
∵MN⊥x轴,且点N在直线y=x上,
∴N(m,m),
∴MN=|﹣m﹣m|=|2m|,
∵MN≤8,
∴|2m|≤8,
∴﹣1≤m≤1,
故答案为﹣1≤m≤1.
此题重点考查学生对于平面直角坐标系的性质,根据平面直角坐标系建立不等式,熟练掌握不等式计算方法是解题的关键.
11、1
【解析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.
【详解】
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.
本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
12、60°或120°
【解析】
该题根据题意分为两种情况,首先正确画出图形,根据已知易得直角三角形DEC的直角边和斜边的长,然后利用三角函数,即可求解.
【详解】
①如图1,
过D作DE⊥BC于E,则∠DEC=∠DEB=90°,
∵AD∥BC,∠A=90°,
∴∠B=90°,
∴四边形ABED是矩形,
∴∠ADE=90°,AB=DE=,
∵CD=5,
∴sinC==,
∴∠C=60°,
∴∠EDC=30°,
∴∠ADC=90°+30°=120°;
②如图2,
此时∠D=60°,
即∠D的度数是60°或120°,
故答案为:60°或120°.
该题重点考查了三角函数的相关知识,解决该题的关键一是:能根据题意画出两种情况,二是:把该题转化为三角函数问题,从而即可求解.
13、(2,0)
【解析】
与x轴交点的纵坐标是0,所以把代入函数解析式,即可求得相应的x的值.
【详解】
解:令,则,
解得.
所以,直线与x轴的交点坐标是.
故填:.
本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.
三、解答题(本大题共5个小题,共48分)
14、(1)甲的速度为;(2),A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;(3)当时,
【解析】
1根据图象中的数据和题意可以求得甲的速度;
2根据甲的速度可以求得乙的速度,再根据图象和题意即可求得点A的坐标和写出点A表示的实际意义;
3根据题意可以求得当t大于a时对应的函数解析式.
【详解】
(1)由题意可得,
甲的速度为:,
故答案为4;
(2)由1知,乙的速度为8 ,
依题意,可得
解得,,
点A的坐标为:,
A点坐标的实际意义是:当乙骑车的时间是60 s时,乙追上甲;
(3)由题意知,
当时,甲乙两人之间的距离是
即直线上另一点的坐标为,
当时,设y与t的函数关系式为:,
直线过点,,
,
解得:,
当时,
考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、D
【解析】
先解方程,求出方程的解,分为两种情况,当x2=2,x2=2时,当x2=2,x2=2时,根据题意求出即可.
【详解】
解方程x2﹣3x+2=0得x=2或x=2,
当x2=2,x2=2时,x2⊗x2=22﹣2×2=﹣2;
当x2=2,x2=2时,x2⊗x2=2×2﹣22=2.
故选:D.
考查解一元二次方程-因式分解法,注意分类讨论,不要漏解.
16、(1)平均数为504;(2)方差为5.8.
【解析】
(1)根据算术平均数的定义计算可得;
(2)根据方差的定义计算可得.
【详解】
(1)平均数:(5+4+5-2+5+2+7+5+3+6)+500=504
(2)方差:(1+0+1+36+1+4+9+1+1+4)=5.8
本题主要考查方差,解题的关键是掌握方差的定义和计算公式.
17、(1)D点坐标为(4,3)(1)15;(3)x<4
【解析】
试题分析:(1)先得到两函数的解析式,组成方程组解求出D的坐标;(1)由y1=
x+1可知,C点坐标为(0,1),分别求出△ABC和△ACD的面积,相加即可.(3)由图可直接得出y1>y1时自变量x的取值范围.
试题解析:(1)将A(0,6)代入y1=−x+m得,m=6;将B(-1,0)代入y1=kx+1得,k=
组成方程组得解得 故D点坐标为(4,3);
(1)由y1=x+1可知,C点坐标为(0,1),S△ABD=S△ABC+S△ACD=×5×1+×5×4=15;
(3)由图可知,在D点左侧时,y1>y1,即x<4时,出y1>y1.
18、(1)见解析;(2)∠C=44°.
【解析】
(1)由平行四边形的性质及角平分线的性质可得AB=AE,CF=CD,进而可得四边形EBFD是平行四边形,即可得出结论;
(2)根据平行线的性质和角平分线的定义即可得到结论.
【详解】
(1)证明:在平行四边形ABCD中,AD∥BC,
∴∠AEB=∠CBE,
又BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,即AB=AE,
同理CF=CD,
又AB=CD,∴CF=AE,
∴BF=DE,
∴四边形EBFD是平行四边形;
(2)解:∵∠AEB=68°,AD∥BC,
∴∠EBF=∠AEB=68°,
∵BE平分∠ABC,
∴∠ABC=2∠EBF=136°,
∴∠C=180°-∠ABC=44°.
故答案为:(1)见解析;(2)∠C=44°.
本题考查平行四边形的性质及角平分线的性质问题,要熟练掌握,并能够求解一些简单的计算、证明问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、16cm2
【解析】
根据正方形的性质,每一个阴影部分的面积等于正方形的,再根据正方形的面积公式列式计算即可得解.
【详解】
解:∵点A、B、C、D分别是四个正方形的中心
∴每一个阴影部分的面积等于正方形的
∴正方形重叠的部分(阴影部分)面积和
故答案为:
本题考查了正方形的性质以及与面积有关的计算,不规则图形的面积可以看成规则图形面积的和或差,正确理解运用正方形的性质是解题的关键.
20、10
【解析】
根据旋转的性质找到对应点、对应角进行解答.
【详解】
∵△ABC绕点A逆时针旋转50°得到△AB′C′,
∴∠BAB′=50°,
又∵∠BAC=70°,
∴∠CAB′=∠BAC-∠BAB′=1°.
故答案是:1.
本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.
21、1
【解析】
由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴BC=AD=8,
∵点E、F分别是BD、CD的中点,
∴EF=BC=×8=1.
故答案为1.
此题考查了平行四边形的性质与三角形中位线的性质.熟练掌握相关性质是解题关键.
22、.
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
23、3.5
【解析】
原式=4-=3=3.5,
故答案为3.5.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ABC,即可解题.
【详解】
∵平分,
∴,
∵,
∴,
∵,,
∴,
∵,,
∴,
∴,即:,
∵,
∴.
本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.
25、详见解析.
【解析】
试题分析:根据平行四边形的性质得到AB=CD,AB∥CD,推出,根据垂平行线的性质得到,根据AAS可判定;根据全等三角形的性质即可得.
试题解析:证明:∵四边形ABCD是平行四边形,
∴.
∴.
∵,
∴.
∴.
∴.
考点:平行四边形的性质;全等三角形的判定及性质.
26、解:(1)见解析
(2)A;90;
(3)50
【解析】
试题分析:(1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF.
(2)∵△ADE≌△ABF,∴∠BAF=∠DAE.
而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°.
∴△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到.
(3)先利用勾股定理可计算出AE=10,在根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
【详解】
解:(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°.
又∵点F是CB延长线上的点,∴∠ABF=90°.
在△ADE和△ABF中,∵,
∴△ADE≌△ABF(SAS).
(2)A;90.
(3)∵BC=8,∴AD=8.
在Rt△ADE中,DE=6,AD=8,∴.
∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
∴AE=AF,∠EAF=90°.
∴△AEF的面积=AE2=×100=50(平方单位).
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份内蒙古巴彦淖尔市名校2025届数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份内蒙古巴彦淖尔市临河区第二中学2024-2025学年数学九上开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份内蒙古巴彦淖尔市临河区八校联盟2025届数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。