辽宁省鞍山市铁西区2025届数学九上开学检测试题【含答案】
展开
这是一份辽宁省鞍山市铁西区2025届数学九上开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,AB=5cm,BC=4cm动点P从B点出发,沿B-C-D-A方向运动至A处停止.设点P运动的路程为x,△ABP的面积为y,x,y关系(),
A.B.C.D.
2、(4分)为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择( )
A.九(1)班B.九(2)班C.九(3)班D.九(4)班
3、(4分)已知△ABC的三边分别是a,b,c,且满足|a-2|++(c-4)2=0,则以a,b,c为边可构成( )
A.以c为斜边的直角三角形B.以a为斜边的直角三角形
C.以b为斜边的直角三角形D.有一个内角为的直角三角形
4、(4分)现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是( )
A.众数B.中位数C.平均数D.众数和中位数
5、(4分)下列根式中,不是最简二次根式的是( )
A.B.C.D.
6、(4分)一组数据3,4,4,5,5,5,6,6,7众数是( )
A.4B.5C.6D.7
7、(4分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )
A.6B.6C.3D.3+3
8、(4分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据:,计算其方差的结果为__________.
10、(4分)如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
11、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
12、(4分) 已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,BP=.下列结论:
①△APD≌△AEB;②点B到直线AE的距离为;
③S△APD+S△APB=+;④S正方形ABCD=4+.
其中正确结论的序号是_____.
13、(4分)在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读理解:
定义:有三个内角相等的四边形叫“和谐四边形”.
(1)在“和谐四边形”中,若,则 ;
(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.
求证:四边形是“和谐四边形”.
15、(8分)已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.
16、(8分)某校计划成立下列学生社团: A.合唱团: B.英语俱乐部: C.动漫创作社; D.文学社:E.航模工作室为了解同学们对上述学生社团的喜爱情况某课题小组在全校学生中随机抽取了部分同学,进行“你最喜爱的一个学生社团”的调查,根据调查结果绘制了如下尚不完整的统计图.
请根据以上信息,解决下列问题:
(1)本次接受调查的学生共有多少人;
(2)补全条形统计图,扇形统计图中D选项所对应扇形的圆心角为多少;
(3)若该学校共有学生3000人,估计该学校学生中喜爱合唱团和动漫创作社的总人数.
17、(10分)如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:
(1)的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是、、的对应点,试画出;
(2)连接,则线段 的位置关系为____,线段的数量关系为___;
(3)平移过程中,线段扫过部分的面积_____.(平方单位)
18、(10分)第一个不透明的布袋中装有除颜色外均相同的7个黑球、5个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,估计袋中红球的个数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.
20、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
21、(4分)已知y=1++,则2x+3y的平方根为______.
22、(4分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为 .
23、(4分)化简:______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数的图象与正比例函数的图象交于点.
(1)求正比例函数和一次函数的解析式;
(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;
(3)求的面积.
25、(10分)如图,在中,,是中线,点是的中点,连接,且,
(1)求证:四边形是菱形;
(2)若,直接写出四边形的面积.
26、(12分)(1)计算:
(2)解方程:(1-2x)2=x2-6x+9
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
易得当点P在BC上由B到C运动时△ABP的面积逐渐增大,由C到D运动5cm ,△ABP的面积不变,由D到A运动4cm,△ABP的面积逐渐减小直至为0,由此可以作出判断.
【详解】
函数图象分三段:①当点P在BC上由B到C运动4cm,△ABP的面积逐渐增大;
②当点P在CD上由C到D运动5cm,△ABP的面积不变;
③当点P在DA上由D到A运动4cm,△ABP的面积逐渐减小,直至为0.
由此可知,选项B正确.
故选B.
本题考查了动点问题的函数图象,解决本题应首先看清横轴和纵轴表示的量.
2、C
【解析】
根据标准差的意义,标准差越小数据越稳定,由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m可知只有九(3)符合要求,故选C.
3、B
【解析】
利用非负数的性质求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状即可.
【详解】
解:由题意可得:a=,b=2,c=4,
∵22+42=20,()2=20,
即b2+c2=a2,
所以△ABC是以a为斜边的直角三角形.
故选B.
本题考查了非负数的性质和勾股定理的逆定理,根据非负数的性质求得a、b、c的值是解决此题的关键.
4、A
【解析】
根据众数、平均数和中位数的定义分别对每一项进行分析,即可得出答案.
【详解】
A、这组数据3、4、5、5、6、6、6、6、7的众数是6,若去掉其中一个数6时,众数还是6,故本选项正确;
B、原数据的中位数是6,若去掉其中一个数6时,中位数是 =5.5,故本选项错误;
C、原数据的平均数是,若去掉其中一个数6时,平均数是,故本选项错误;
D、众数不变,中位数发生改变,故本选项错误;
故选A.
考查了确定一组数据的中位数、平均数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
5、C
【解析】
根据最简二次根式的概念即可求出答案.
【详解】
C.原式=2,故C不是最简二次根式,
故选:C.
此题考查最简二次根式,解题关键在于掌握其概念.
6、B
【解析】
先把数据按大小排列,然后根据众数的定义可得到答案.
【详解】
数据按从小到大排列:3,4,4,5,5,5,6,6,7,
数据5出现3次,次数最多,所以众数是5.
故选B.
此题考查众数,难度不大
7、A
【解析】
试题分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.
连接BC′, ∵旋转角∠BAB′=45°,∠BAD′=45°, ∴B在对角线AC′上, ∵B′C′=AB′=3,
在Rt△AB′C′中,AC′==3, ∴B′C=3﹣3,
在等腰Rt△OBC′中,OB=BC′=3﹣3, 在直角三角形OBC′中,OC=(3﹣3)=6﹣3,
∴OD′=3﹣OC′=3﹣3,
∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6
考点:(1)旋转的性质;(2)正方形的性质;(3)等腰直角三角形的性质
8、D
【解析】
本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.
【详解】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间,减去提前完成时间,可以列出方程:
故选:D.
这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
方差是用来衡量一组数据波动大小的量.数据5,5,5,5,5全部相等,没有波动,故其方差为1.
【详解】
解:由于方差是反映一组数据的波动大小的,而这一组数据没有波动,故它的方差为1.
故答案为:1.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
10、
【解析】
试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.
∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
∴S△ABC=2S△BCE,S△ABD=2S△ADE,
∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴点A的坐标为(,3),点B的坐标为(-,-),
∴AC=3,BD=,
∴AB=2AC=6,AF=AC+BD=,
∴CD=k=.
【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
11、①②③④
【解析】
分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.
详解:∵BC=EC,
∴∠CEB=∠CBE,
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CEB=∠EBF,
∴∠CBE=∠EBF,
∴①BE平分∠CBF,正确;
∵BC=EC,CF⊥BE,
∴∠ECF=∠BCF,
∴②CF平分∠DCB,正确;
∵DC∥AB,
∴∠DCF=∠CFB,
∵∠ECF=∠BCF,
∴∠CFB=∠BCF,
∴BF=BC,
∴③正确;
∵FB=BC,CF⊥BE,
∴B点一定在FC的垂直平分线上,即PB垂直平分FC,
∴PF=PC,故④正确.
故答案为①②③④.
点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.
12、①③④
【解析】
由题意可得△ABE≌△APD,故①正确,可得∠APD=∠AEB=135°,则∠PEB=90°,由勾股定理可得BE,作BM⊥AE于M,可得△BEM是等腰直角三角形,
可得BM=EM=,故②错误,根据面积公式即可求S△APD+S△APB,S正方形ABCD,根据计算结果可判断.
【详解】
解:∵正方形ABCD
∴AB=AD,∠BAD=90°
又∵∠EAP=90°
∴∠BAE=∠PAD,AE=AP,AB=AD
∴△AEB≌△APD故①正确
作BM⊥AE于M,
∵AE=AP=1,∠EAP=90°
∴EP=,∠APE=45°=∠AEP
∴∠APD=135°
∵△AEP≌△APD,
∴∠AEB=135°
∴∠BEP=90°
∴BE
∵∠M=90°,∠BEM=45°
∴∠BEM=∠EBM=45°
∴BE=MB 且BE=,
∴BM=ME=,故②错误
∵S△APD+S△APB=S四边形AMBP﹣S△BEM
故③正确
∵S正方形ABCD=AB2=AE2+BE2
∴S正方形ABCD 故④正确
∴正确的有①③④
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,关键是构造直角三角形求出点B到直线AE的距离.
13、AB//CD等
【解析】
根据平行四边形的判定方法,结合已知条件即可解答.
【详解】
∵AB=CD,
∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)
或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.
故答案为AD=BC或者AB∥CD.
本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)见解析.
【解析】
(1)根据四边形的内角和是360°,即可得到结论;
(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可.
【详解】
解:(1)∵四边形ABCD是“和谐四边形”,∠A+∠B+∠C+∠D=360°,
∵∠B=135°,
∴∠A=∠D=∠C=(360°−135°)=75°,
故答案为:75°;
(2)证明:∵四边形DEBF为平行四边形,
∴∠E=∠F,且∠E+∠EBF=180°.
∵DE=DA,DF=DC,
∴∠E=∠DAE=∠F=∠DCF,
∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,
∴∠DAB=∠DCB=∠ABC,
∴四边形ABCD是“和谐四边形”.
本题主要考查了翻折变换−折叠问题,四边形的内角和是360°,平行四边形的性质等,解题的关键是理解和谐四边形的定义.
15、见解析
【解析】
由垂直得到∠AEB=∠CFD=90°,然后可证明Rt△ABE≌Rt△CDF,得到∠ABE=∠CDF,然后证明AB∥CD,再根据平行四边形的判定判断即可.
【详解】
解:证明:∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
在Rt△ABE和Rt△CDF中,
,
∴Rt△ABE≌Rt△CDF,
∴∠ABE=∠CDF,
∴AB∥CD,∵AB=CD,
∴四边形ABCD是平行四边形.
本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出∠ABE=∠CDF,主要考查学生运用性质进行推理的能力.
16、(1)200;(2)补全条形统计图见解析;D选项所对应扇形的圆心角度数=72°;(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
【解析】
(1)由社团人数及其所占百分比可得总人数;
(2)总人数减去其它社团人数可求得的人数,再用乘以社团人数所占比例即可得;
(3)总人数乘以样本中、社团人数和占被调查人数的比例即可得.
【详解】
解:(1)本次接受调查的学生共有(人,
(2)社团人数为(人,
补全图形如下:
扇形统计图中选项所对应扇形的圆心角为,
(3)估计该学校学生中喜爱合唱团和动漫创作社的总人数为(人.
答:估计该学校学生中喜爱合唱团和动漫创作社的总人数为900人.
本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.
17、(1)见解析;(2)平行,相等;(3)1.
【解析】
(1)直接利用平移的性质分别得出对应点位置进而得出答案;
(2)利用平移的性质得出线段AA1、BB1的位置与数量关系;
(3)利用三角形面积求法进而得出答案.
【详解】
解:(1)如图所示:△A1B1C1,即为所求;
(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.
故答案为:平行,相等;
(3)平移过程中,线段AB扫过部分的面积为:2××3×5=1.
故答案为:1.
此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.
18、估计袋中红球8个.
【解析】
根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.
【详解】
解:由题意可得:摸到黑球和白球的频率之和为:,
总的球数为:,
红球有:(个.
答:估计袋中红球8个.
此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(-3,1)
【解析】
根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.
【详解】
根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,
∴西便门的坐标为(−3,1),
故答案为(−3,1);
此题考查坐标确定位置,解题关键在于建立直角坐标系.
20、(5,-)或(5,-).
【解析】
由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
【详解】
∵AE分△ABC的面积比为1:2,点E在线段BC上,
∴BE:CE=1:2或BE:CE=2:1.
∵B(5,1),C(5,-6),
∴BC=1-(-6)=2.
当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
故答案为:(5,-)或(5,-).
本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
21、±2
【解析】
先根据二次根式有意义的条件求出x的值,进而得出y的值,根据平方根的定义即可得出结论.
【详解】
解:由题意得,,
,
,
,
的平方根为.
故答案为.
本题考查二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键
22、
【解析】
试题分析:∵AB=12,BC=1,∴AD=1.
∴.
根据折叠可得:AD=A′D=1,∴A′B=13-1=2.
设AE=x,则A′E=x,BE=12-x,
在Rt△A′EB中:,解得:.
23、3
【解析】
分析:根据算术平方根的概念求解即可.
详解:因为32=9
所以=3.
故答案为3.
点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
二、解答题(本大题共3个小题,共30分)
24、(1)一次函数表达式为y=2x-2;正比例函数为y=x;(2)x
相关试卷
这是一份辽宁省鞍山市铁西区、立山区2025届数学九上开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省鞍山市台安县2024-2025学年九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省鞍山市第二十六中学2024-2025学年数学九上开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。