年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】

    立即下载
    加入资料篮
    江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】第1页
    江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】第2页
    江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】

    展开

    这是一份江苏省盐城市东台市第二联盟2024-2025学年九上数学开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列式子中,属于最简二次根式的是:
    A.B.C.D.
    2、(4分)如图:,,,若,则等于( )
    A.B.C.D.
    3、(4分)下列命题,是真命题的是( )
    A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形
    C.对角线互相垂直平分的四边形是正方形D.对角线相等的菱形是正方形
    4、(4分)下列命题中,真命题是( )
    A.两条对角线垂直的四边形是菱形
    B.对角线垂直且相等的四边形是正方形
    C.两条对角线相等的四边形是矩形
    D.两条对角线相等的平行四边形是矩形
    5、(4分)一组数据:3、4、4、5,若添加一个数4,则发生变化的统计量是( )
    A.平均数B.众数C.中位数D.标准差
    6、(4分)已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是
    A.B.C.D.
    7、(4分)关于的不等式的解集在数轴上表示如下,则的取值范围是( )
    A.B.C.D.
    8、(4分)如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为( )
    A.B.5C.7D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.
    10、(4分)已知关于的方程会产生增根,则__________.
    11、(4分)如图,在Rt△ABC中,∠C=90°,若AB=17, 则正方形ADEC和BCFG的面积的和为________.
    12、(4分)在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为,,则关于的函数解析式是_______________________________.
    13、(4分)如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是__.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
    (1)农民自带的零钱是多少?
    (2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式
    (3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
    15、(8分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
    (1)当x≥200时,求y与x之间的函数关系式
    (2)若小刚家10月份上网180小时,则他家应付多少元上网费?
    (3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?
    16、(8分)探索发现:,,,根据你发现的规律,回答下列问题:
    (1) , ;
    (2)利用你发现的规律计算:;
    (3)灵活利用规律解方程:.
    17、(10分)已知一次函数的图象过点(3,5)与点(-4,-9).
    (1)求这个一次函数的解析式.
    (2)若点在这个函数的图象上,求的值.
    18、(10分)某校计划厂家购买A、B两种型号的电脑,已知每台A种型号电脑比每台B种型号电脑多01.万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同;
    (1)求A、B两种型号电脑单价各为多少万元?
    (2)学校预计用不多于9.2万元的资金购进20台电脑,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,,,的垂直平分线交于点,交于点,则的度数是__________.
    20、(4分)如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,
    ,则线段EF的长为______.
    21、(4分)如图,将绕点按顺时针方向旋转至,使点落在的延长线上.已知,则___________度;如图,已知正方形的边长为分别是边上的点,且,将绕点逆时针旋转,得到.若,则的长为_________ .
    22、(4分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标是_____.
    23、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点、、、在一条直线上,,,,交于.
    求证:与互相平分,
    25、(10分)如图,在菱形中,.请根据下列条件,仅用无刻度的直尺过顶点作菱形的边上的高。
    (1)在图1中,点为中点;
    (2)在图2中,点为中点.
    26、(12分)将矩形纸片按图①所示的方式折叠,得到菱形(如图②),若,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据最简二次根式的定义对各选项进行判断.
    【详解】
    解: =3,=2 ,=
    而为最简二次根式.
    故选:A.
    本题考查最简二次根式:熟练掌握最简二次根式满足的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式).
    2、C
    【解析】
    过点D作DG⊥AC于点G,先根据∠DAE=∠DAF=15°,DE∥AB,DF⊥AB得出∠ADE=∠DAE=15°,DF=DG,再由AE=6可得出DE=6,根据三角形外角的性质可得出∠DEG的度数,由直角三角形的性质得出DG的长,进而可得出结论.
    【详解】
    解:过点作于点,
    ,,




    是的外角,


    故选C.
    本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.
    3、D
    【解析】
    根据菱形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.
    【详解】
    解:A、对角线互相垂直的平行四边形是菱形,所以A选项错误;
    B、对角线相等的平行四边形是矩形,所以B选项错误;
    C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;
    D、对角线相等的菱形是正方形,正确,是真命题;所以D选项正确.
    故选:D.
    本题考查度的是命题的真假判断以及矩形、菱形的判定正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.熟练掌握矩形、菱形的判定定理是解答此题的关键.
    4、D
    【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;
    B、对角线垂直且相等的平行四边形是正方形,故选项B错误;
    C、两条对角线相等的平行四边形是矩形,故选项C错误;
    D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;
    故选D.
    5、D
    【解析】
    依据平均数、中位数、众数、标准差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、标准求解即可.
    【详解】
    原数据的3,4, 4,5的平均数为,
    原数据的中位数为,
    原数据的众数为4,
    标准差为;
    新数据3,4,4,4,5的平均数为,
    新数据3,4,4,4,5的中位数为4,
    新数据3,4,4,4,5的众数为4,
    新数据3,4,4,4,5的标准差为,
    ∴添加一个数据4,标准差发生变化,
    故选D.
    本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.
    6、D
    【解析】
    根据菱形的面积列出等式后即可求出y关于x的函数式.
    【详解】
    由题意可知:10=xy,
    ∴y=(x>0),
    故选:D.
    本题考查反比例函数,解题的关键是熟练运用菱形的面积公式,本题属于基础题型.
    7、C
    【解析】
    先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.
    【详解】
    解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤0,解不等式2x-a≤-1得,x≤,即=0,解得a=1.故选C.
    本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.
    8、A
    【解析】
    根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是1,得出BC的值,再利用勾股定理即可解答.
    【详解】
    由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,
    曲线开始AK=a,结束时AK=a,所以AB=AC.
    当AK⊥BC时,在曲线部分AK最小为1.
    所以 BC×1=1,解得BC=2.
    所以AB=.
    故选:A.
    此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.
    【详解】
    解:根据题意,
    y=400x+500(100-x)=-100x+50000;
    故答案为
    本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.
    10、4
    【解析】
    增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.
    【详解】
    方程两边都乘(x−2),得
    2x−m=3(x−2),
    ∵原方程有增根,
    ∴最简公分母x−2=0,即增根为x=2,
    把x=2代入整式方程,得m=4.
    故答案为:4.
    此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.
    11、189
    【解析】
    【分析】小正方形的面积为AC的平方,大正方形的面积为BC的平方.两正方形面积的和为AC1+BC1,对于Rt△ABC,由勾股定理得AB1=AC1+BC1.AB长度已知,故可以求出两正方形面积的和.
    【详解】正方形ADEC的面积为:AC1,
    正方形BCFG的面积为:BC1;
    在Rt△ABC中,AB1=AC1+BC1,AB=17,
    则AC1+BC1=189,
    故答案为:189.
    【点睛】本题考查了勾股定理的应用,勾股定理应用的前提条件是在直角三角形中.
    12、
    【解析】
    首先根据菱形的性质得出∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC,进而得出∠BAM,然后根据对称性得出∠AND=∠AND==180°-,分情况求解即可.
    【详解】
    ∵菱形ABCD中,AB=AM,
    ∴∠ABC=∠ADC=,AB=BC=CD=AD,AD∥BC
    ∴∠ABC+∠BAD=180°,
    ∴∠BAD=180°-
    ∵AB=AM,
    ∴∠AMB=∠ABC=
    ∴∠BAM=180°-∠ABC-∠AMB=180°-2
    连接BN、AN,如图:
    ∵点B关于直线AM对称的点是N,
    ∴AN=AB,∠MAN=∠BAM=180°-2,即∠BAN=2∠BAM=360°-4
    ∴AN=AD,∠DAN=∠BAD-∠BAN=180°--(360°-4)=3-180°
    ∴∠AND=∠AND==180°-
    ∵M是BC边上的点(不与B,C两点重合),


    若,即时,
    ∠CDN=∠ADC-∠AND=,即;
    若即时,
    ∠CDN=∠AND-∠ADC =,即
    ∴关于的函数解析式是
    故答案为:.
    此题主要考查菱形的性质与一次函数的综合运用,熟练掌握,即可解题.
    13、1.
    【解析】
    根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.
    【详解】
    ∵当y=0时,解得x=1,
    ∴点E的坐标是(1,0),即OE=1,
    ∵OC=4,
    ∴EC=OC﹣OE=4﹣1=1,
    ∴点F的横坐标是4,
    ∴ 即CF=2,
    ∴△CEF的面积
    故答案为:1.
    本题考查的是一次函数图象上点的坐标特点,根据直线的解析式求出点E、F的坐标是解题的关键,同时也考查了矩形的性质,难度不大.
    三、解答题(本大题共5个小题,共48分)
    14、(1) 5元(2) 0.5元/千克; y=x+5(0≤x≤30);(3)他一共带了45千克土豆.
    【解析】
    (1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.
    【详解】
    (1)根据图示可得:农民自带的零钱是5元.
    (2)(20-5)÷30=0.5(元/千克) ∴y=x+5(0≤x≤30)
    答:降价前他出售的土豆每千克是0.5元.
    (3)(26-20)÷0.4+30=15+30=45(千克) 答:他一共带了45千克土豆.
    考点:一次函数的应用.
    15、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.
    【解析】
    (1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.
    【详解】
    (1)设当x≥200时,y与x之间的函数关系式为y=kx+b,
    ∵图象经过(200,40)(220,70),
    ∴,解得,
    ∴此时函数表达式为y=x-260;
    (2)根据图象可得小刚家10月份上网180小时应交费40元;
    (3)把y=52代入y=x-260中得:x=208,
    答:他家该月的上网时间是208小时.
    考核知识点:一次函数的应用.数形结合分析问题是关键.
    16、(1) ,;(2);(3).
    【解析】
    (1)仿照已知等式变形即可;
    (2)归纳总结得到一般性规律,将原式化简,计算即可求出值;
    (3)已知方程左边利用得出的规律化简,求出解即可.
    【详解】
    (1)
    故答案为:,;
    (2)原式
    (3)
    解得:,
    经检验x=33是分式方程的解.
    此题考查了解分式方程,有理数的混合运算,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.
    17、(1);(2)
    【解析】
    (1)设函数解析式为,将两点坐标代入求解即可;
    (2)将点的坐标代入解析式即可求的值.
    【详解】
    (1)设函数解析式为,将两点坐标代入得

    解之得,
    所求的解析式为
    (2)将点的坐标代入上述解析式得

    解之得
    本题考查了一次函数的问题,掌握一次函数的性质以及应用是解题的关键.
    18、(1)A、B两种型号电脑单价分别为0.5万元和0.4万元;(2)有三种方案:购买A种型号电脑10台,B种型号电脑10台;购买A种型号电脑11台,B种型号电脑9台;购买A种型号电脑12台,B种型号电脑8台.
    【解析】
    (1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x+0.1)万元,根据题意可列出分式方程进行求解;
    (2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,根据题意可列出不等式组即可求解.
    【详解】
    (1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x-0.1)万元,根据题意得,
    解得x=0.5,
    经检验,x=0.5是原方程的解,x-0.1=0.4,
    故A、B两种型号电脑单价分别为0.5万元和0.4万元.
    (2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,
    根据题意得,解得y≤12,
    又A种型号电脑至少要购进10台,
    ∴10≤y≤12,
    故有三种方案:
    购买A种型号电脑10台,B种型号电脑10台;
    购买A种型号电脑11台,B种型号电脑9台;
    购买A种型号电脑12台,B种型号电脑8台;
    此题主要考查分式方程、不等式的应用,解题的关键是根据题意找到等量关系、不等式关系进行列式求解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据等边对等角和三角形的内角和定即可求出∠ABC,然后根据垂直平分线的性质可得DA=DB,再根据等边对等角可得∠DBA=∠A,即可求出∠DBC.
    【详解】
    解:∵,,
    ∴∠ABC=∠ACB=(180°-∠A)=75°
    ∵的垂直平分线交于点,
    ∴DA=DB
    ∴∠DBA=∠A=30°
    ∴∠DBC=∠ABC-∠DBA=45°
    故答案为:45°
    此题考查的是等腰三角形的性质和垂直平分线的性质,掌握等边对等角和垂直平分线的性质是解决此题的关键.
    20、3
    【解析】
    由菱形性质得AC⊥BD,BO= ,AO=,由勾股定理得AO= ,由中位线性质得EF=.
    【详解】
    因为,菱形ABCD中,对角线AC,BD相交于点O,
    所以,AC⊥BD,BO= ,AO=,
    所以,AO= ,
    所以,AC=2AO=6,
    又因为E,F分别是的边AB,BC边的中点
    所以,EF=.
    故答案为3
    本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.
    21、46 2.1
    【解析】
    先利用三角形外角性质得∠ACA′=∠A+∠B=67°,再根据旋转的性质得∠BCB′=∠ACA′=67°,然后利用平角的定义计算∠ACB′的度数;由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF为41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长..
    【详解】
    解:∵∠A=27°,∠B=40°,
    ∴∠ACA′=∠A+∠B=67°,
    ∵△ABC绕点C按顺时针方向旋转至△A′B′C,
    ∴∠BCB′=∠ACA′=67°,
    ∴∠ACB′=180°-67°-67°=46°.
    ∵△DAE逆时针旋转90°得到△DCM,
    ∴∠FCM=∠FCD+∠DCM=180°,
    ∴F、C、M三点共线,
    ∴DE=DM,∠EDM=90°,
    ∴∠EDF+∠FDM=90°,
    ∵∠EDF=41°,
    ∴∠FDM=∠EDF=41°,
    在△DEF和△DMF中,,
    ∴△DEF≌△DMF(SAS),
    ∴EF=MF,
    设EF=MF=x,
    ∵AE=CM=1,且BC=3,
    ∴BM=BC+CM=4,
    ∴BF=BM-MF=BM-EF=4-x,
    ∵EB=AB-AE=2,
    在Rt△EBF中,由勾股定理得EB2+BF2=EF2,
    即22+(4-x)2=x2,
    解得:x=2.1,
    ∴FM=2.1.
    故答案为:46;2.1.
    本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理的综合应用.解题的关键是掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
    22、(1,5)
    【解析】
    根据向右平移横坐标加,向上平移纵坐标加求解即可.
    【详解】
    解:∵点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P',
    ∴点P′的横坐标为-2+3=1,
    纵坐标为1+4=5,
    ∴点P′的坐标是(1,5).
    故答案为(1,5).
    本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    23、2
    【解析】
    两个面积相等的正方形无论它们各自位置如何,当其中一个正方形的顶点与另一个正方形对角线的交点重合时,此时的重合部分面积总是等于其中一个正方形面积的四分之一,据此求解即可.
    【详解】
    ∵无论正方形位置关系如何,其重合部分面积不变,仍然等于其中一个正方形面积的四分之一,
    ∴重合部分面积=.
    故答案为:2.
    本题主要考查了正方形性质,熟练掌握相关概念是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、详见解析
    【解析】
    连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB//DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.
    【详解】

    证明:如图,连接BD,AE,
    ∵FB=CE,
    ∴BC=EF,
    又∵AB∥ED,AC∥FD,
    ∴∠ABC=∠DEF,∠ACB=∠DFE,
    在△ABC和△DEF中,

    ∴△ABC≌△DEF(ASA),
    ∴AB=DE,
    又∵AB∥DE,
    ∴四边形ABDE是平行四边形,
    ∴AD与BE互相平分.
    本题主要考查了平行四边形的判定和性质,解决问题的关键是依据全等三角形的对应边相等得出结论.
    25、(1)见解析;(2)见解析.
    【解析】
    (1)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是中心对称图形,连接AC、BD得到对称中心O,再作直线交于,连接,即可.
    (2)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是轴对称图形,连接,交于点,作直线交于,线段即为所求.
    【详解】
    解:(1)如图1中,连接,交于点,作直线交于,连接,线段即为所求.
    (2)如图2中,连接,交于点,作直线交于,线段即为所求.
    本题考查菱形的性质,三角形的高的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    26、
    【解析】
    根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC的长.
    【详解】
    解:由折叠可得,△EOC≌△EBC,
    ∴CB=CO,
    ∵四边形ABED是菱形,
    ∴AO=CO.
    ∵四边形ABCD是矩形,
    ∴∠B=90°,
    设BC=x,则AC=2x,
    ∵在Rt△ABC中,AC2=BC2+AB2,
    ∴(2x)2=x2+32,
    解得x=,即BC=.
    根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.
    题号





    总分
    得分
    批阅人

    相关试卷

    江苏省盐城市东台市三仓片区2024-2025学年九上数学开学质量检测试题【含答案】:

    这是一份江苏省盐城市东台市三仓片区2024-2025学年九上数学开学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省盐城市东台市第五联盟2025届数学九上开学经典试题【含答案】:

    这是一份江苏省盐城市东台市第五联盟2025届数学九上开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省盐城市东台市七校2025届九上数学开学检测试题【含答案】:

    这是一份江苏省盐城市东台市七校2025届九上数学开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map