江苏省无锡市名校2024年数学九年级第一学期开学达标检测模拟试题【含答案】
展开
这是一份江苏省无锡市名校2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)利用函数的图象解得的解集是,则的图象是( )
A.B.C.D.
2、(4分)如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A.(4,2)B.(3,3)C.(4,3)D.(3,2)
3、(4分)如图,在矩形中,动点从点开始沿的路径匀速运动到点停止,在这个过程中,的面积随时间变化的图象大致是( )
A.B.
C.D.
4、(4分)下面式子从左边到右边的变形是因式分解的是( )
A.x2﹣x﹣2=x(x﹣1)﹣2B.x2﹣4x+4=(x﹣2)2
C.(x+1)(x﹣1)=x2﹣1D.x﹣1=x(1﹣)
5、(4分)下列式子没有意义的是( )
A.B.C.D.
6、(4分)一组数据3,4,4,5,5,5,6,6,7众数是( )
A.4B.5C.6D.7
7、(4分)式子,,,,中是分式的有
A.1个B.2个C.3个D.4个
8、(4分)六边形的内角和为( )
A.360°B.540°C.720°D.900°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的边长为8, ,点E、F分别为AO、AB的中点,则EF的长度为________.
10、(4分)若点、在双曲线上,则和的大小关系为______.
11、(4分)我市某一周每天的最低气温统计如下(单位:℃):﹣1,﹣4,6,0,﹣1,1,﹣1,则这组数据的众数为__________.
12、(4分)一次函数y=kx-2的函数值y随自变量x的增大而减小,则k的取值范围是__.
13、(4分)如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______
三、解答题(本大题共5个小题,共48分)
14、(12分)完成下面推理过程
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
15、(8分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.
16、(8分)如图,正方形的边长为8,在上,且,是上的一动点,求的最小值.
17、(10分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
(1)当x≥200时,求y与x之间的函数关系式
(2)若小刚家10月份上网180小时,则他家应付多少元上网费?
(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?
18、(10分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.
(1)求OD长的取值范围;
(2)若∠CBD=30°,求OD的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.
20、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
21、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
22、(4分)若点位于第二象限,则x的取值范围是______.
23、(4分)在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
25、(10分)根据条件求二次函数的解析式:
(1)抛物线的顶点坐标为,且与轴交点的坐标为,
(2)抛物线上有三点求此函数解析式.
26、(12分)(问题情境)
如图,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(探究展示)
(1)直接写出AM、AD、MC三条线段的数量关系: ;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
(拓展延伸)
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图,探究展示(1)、(2)中的结论是否成立,请分别作出判断,不需要证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数与一元一次不等式得到当x<-2时,直线y=ax+b的图象在x轴下方,然后对各选项分别进行判断.
【详解】
解:∵不等式ax+b<0的解集是x<-2,
∴当x<-2时,函数y=ax+b的函数值为负数,即直线y=ax+b的图象在x轴下方.
故选:C.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
2、A
【解析】
作AM⊥x轴,根据等边三角形的性质得出OA=OB=2,∠AOB=60°,利用含30°角的直角三角形的性质求出OM=OA=1,即可求出AM的长,进而可得A点坐标,即可得出直线OA的解析式,把x=3代入可得A′点的坐标,由一对对应点A与A′的移动规律即可求出点B′的坐标.
【详解】
如图,作AM⊥x轴于点M,
∵等边△OAB的顶点B坐标为(2,0),
∴OA=OB=2,∠AOB=60°,
∴OM=OA=1,AM=OM=,
∴A(1,),
∴直线OA的解析式为:y=x,
∴当x=3时,y=3,
∴A′(3,3),
∴将A点向右平移2个单位,再向上平移2个单位后得到A′点,
∴将B(2,0)向右平移2个单位,再向上平移2个单位后可得到B′点,
∴点B′的坐标为(4,2),
故选A
本题考查坐标与图形变化—平移及等边三角形的性质,根据等边三角形的性质得到平移规律是解题关键.
3、B
【解析】
根据三角形的面积可知当P点在AB上时,的面积随时间变大而变大,当P点在AD上时,△PBC的面积不会发生改变,当P点在CD上时,的面积随时间变大而变小.
【详解】
解:当P点在AB上时,的面积= ,则的面积随时间变大而变大;
当P点在AD上时,的面积=,则的面积不会发生改变;
当P点在CD上时,的面积=,则的面积随时间变大而变小,且函数图象的斜率应与P点在AB上时相反;
综上可得B选项的图象符合条件.
故选B.
本题主要考查三角形的面积公式,函数图象,解此题关键在于根据题意利用三角形的面积公式分段对函数图象进行分析.
4、B
【解析】
根据因式分解的定义即可判断.
【详解】
A. 含有加减,不是因式分解;
B. 是因式分解;
C. 是整式的运算,不是因式分解;
D. 含有分式,不是因式分解.
故选B
此题主要考查因式分解的定义:把一个多项式化为几个整式的乘积形式.
5、A
【解析】
试题分析:A.没有意义,故A符合题意;
B.有意义,故B不符合题意;
C.有意义,故C不符合题意;
D.有意义,故D不符合题意;
故选A.
考点:二次根式有意义的条件.
6、B
【解析】
先把数据按大小排列,然后根据众数的定义可得到答案.
【详解】
数据按从小到大排列:3,4,4,5,5,5,6,6,7,
数据5出现3次,次数最多,所以众数是5.
故选B.
此题考查众数,难度不大
7、B
【解析】
,,,,中分式有,两个,其它代数式分母都不含有字母,故都不是分式.
故选B.
8、C
【解析】
根据多边形内角和公式(n-2) ×180 º计算即可.
【详解】
根据多边形的内角和可得:
(6﹣2)×180°=720°.
故选C.
本题考查了多边形内角和的计算,熟记多边形内角和公式是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO=∠ABC=30°,
∴OA=AB=4,
∴OB= ,
∵点E、F分别为AO、AB的中点,
∴EF为△AOB的中位线,
∴EF=OB=2.
故答案是:2 .
考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.
10、
【解析】
根据反比例函数的增减性解答即可.
【详解】
将A(7,y1),B(5,y2)分别代入双曲线上,得y1=;y2=,则y1与y2的大小关系是.
故答案为.
此题考查反比例函数的性质,解题关键在于掌握其性质.
11、-1
【解析】
众数是一组数据中出现次数最多的数据.
【详解】
观察﹣1,﹣4,6,0,﹣1,1,﹣1
其中﹣1出现的次数最多,
故答案为: .
本题考查了众数的概念,解题的关键在于对众数的理解.
12、k<1
【解析】
根据一次函数图象的增减性来确定k的符号即可.
【详解】
解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,
∴k<1,
故答案为k<1.
本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠1)中,当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.
13、8
【解析】
根据多边形内角和公式可知n边形的内角和为(n-2)·180º,n边形的外角和为360,再根据n边形的每个内角都等于其外角的3倍列出关于n的方程,求出n的值即可.
【详解】
解:∵n边形的内角和为(n-2)·180º,外角和为360,n边形的每个内角都等于其外角的3倍,
∴(n-2)·180º =360×3,
解得:n=8.
故答案为:8.
本题考查的是多边形的内角与外角的关系的应用,明确多边形一个内角与外角互补和外角和的特征是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角平分线定义;DF∥BE;同位角相等,两直线平行;两直线平行,内错角相等
【解析】
根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.
【详解】
∵DE∥BC(已知),
∴∠ADE=∠ABC(两直线平行,同位角相等),
∵DF、BE分别平分ADE、∠ABC,
∴∠ADF=∠ADE,
∠ABE=∠ABC(角平分线定义),
∴∠ADF=∠ABE,
∴DF∥BE(同位角相等,两直线平行),
∴∠FDE=∠DEB(两直线平行,内错角相等).
故答案是:∠ABC ,两直线平行,同位角相等,∠ADE ,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.
考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.
15、证明见解析.
【解析】
【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE≌△BOF,得到OE=OF,利用对角线互相平分的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE为菱形.
【详解】∵在▱ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中,
,
∴△DOE≌△BOF(ASA),
∴OE=OF,
又∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,
∴四边形BFDE为菱形.
【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF是解题关键.
16、的最小值是1.
【解析】
连接,,根据点与点关于对称和正方形的性质得到DN+MN的最小值即为线段BM的长.
【详解】
解:∵四边形是正方形,
∴点关于的对称点是点.
连接,,且交于点,与交于点,此时的值最小.
∵,正方形的边长为8,
∴,.
由,知.
又∵点与点关于对称,
∴且平分.∴.
∴.
∴的最小值是1.
本题考查轴对称的应用和勾股定理的基本概念.解答本题的关键是读懂题意,知道根据正方形的性质得到DN+MN的最小值即为线段BM的长.
17、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.
【解析】
(1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.
【详解】
(1)设当x≥200时,y与x之间的函数关系式为y=kx+b,
∵图象经过(200,40)(220,70),
∴,解得,
∴此时函数表达式为y=x-260;
(2)根据图象可得小刚家10月份上网180小时应交费40元;
(3)把y=52代入y=x-260中得:x=208,
答:他家该月的上网时间是208小时.
考核知识点:一次函数的应用.数形结合分析问题是关键.
18、(1);(2).
【解析】
(1)根据三角形三边关系即可求解;
(2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.
【详解】
解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,
∴AB=CD=5,BC=AD=1,OD=BD,
∴在△ABD中,,
∴.
(2)过点D作DE⊥BC交BC延长线于点E,
∵∠CBD=30°,
∴DE=BD,
∵四边形ABCD是平行四边形,
∴OD=BD=DE,
设OD为x,则DE=x,BD=2x,
∴BE=,
∵BC=1,
∴CE=BE-BC=-1,
在Rt△CDE中,,
解得,,
∵BE=>BC=1,
∴不合题意,舍
∴OD=.
故答案为:(1);(2).
本题考查了平行四边形性质、三角形三边关系以及勾股定理的运用,熟练解一元二次方程是解决本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(3,1)
【解析】
关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.
【详解】
由题意得点C(-3,1)的对应点C′的坐标是(3,1).
考点:关于y轴对称的点的坐标
本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.
20、1
【解析】
由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.
【详解】
一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
故答案为1.
本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.
21、4
【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB==.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
故答案为4.
考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
22、
【解析】
点在第二象限时,横坐标0,可得关于x的不等式,解不等式即可得答案.
【详解】
点位于第二象限,
,
解得:,
故答案为.
本题考查了象限内点的坐标特征,解一元一次不等式,解决本题的关键是记住各个象限内点的坐标的符号,进而转化为解不等式的问题.
23、(-1,1)
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
【详解】
解:将点向右平移1个单位,再向下平移2个单位得到点,
则点的坐标为(-1,1).
故答案为(-1,1).
本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)(4,2)(3)(6,0)
【解析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;
(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;
(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.
【详解】
证明:∵∠ACB=90°,AD⊥l
∴∠ACB=∠ADC
∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE
∴∠CAD=∠BCE,
∵∠ADC=∠CEB=90°,AC=BC
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,
由已知得OM=ON,且∠OMN=90°
∴由(1)得MF=NG,OF=MG,
∵M(1,3)
∴MF=1,OF=3
∴MG=3,NG=1
∴FG=MF+MG=1+3=4,
∴OF﹣NG=3﹣1=2,
∴点N的坐标为(4,2),
(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,
对于直线y=﹣3x+3,由x=0得y=3
∴P(0,3),
∴OP=3
由y=0得x=1,
∴Q(1,0),OQ=1,
∵∠QPR=45°
∴∠PSQ=45°=∠QPS
∴PQ=SQ
∴由(1)得SH=OQ,QH=OP
∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1
∴S(4,1),
设直线PR为y=kx+b,则 ,解得
∴直线PR为y=﹣x+3
由y=0得,x=6
∴R(6,0).
本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
25、(1) (2)
【解析】
(1)设抛物线解析式为,根据待定系数法求解即可.
(2)设抛物线的解析式为,根据待定系数法求解即可.
【详解】
(1)∵抛物线的顶点坐标为
∴设抛物线解析式为
将代入中
解得
故抛物线解析式为.
(2)设抛物线的解析式为
将代入中
解得
故抛物线解析式为.
本题考查了抛物线解析式的问题,掌握待定系数法是解题的关键.
26、(1)证明见解析;(2)成立.证明见解析;(3) (1)成立;(2)不成立
【解析】
(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.
(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.
(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.
【详解】
解:(1)证明:延长AE、BC交于点N,如图1(1),
∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠ENC=∠MAE.∴MA=MN.
∴△ADE≌△NCE(AAS)
∴AD=NC.∴MA=MN=NC+MC=AD+MC.
(2)AM=DE+BM成立.
证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.
∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.
∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.
∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.
∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.
∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.
(3)①结论AM=AD+MC仍然成立.
证明:延长AE、BC交于点P,如图2(1),
∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.
∴∠EPC=∠MAE.∴MA=MP.
∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.
②结论AM=DE+BM不成立.
证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.
∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,
∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.
∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM
=∠BAM+∠QAB ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.
∴△ABQ≌△ADE(AAS)∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.
∴AM=DE+BM不成立.
本题是四边形综合题,主要考查了正方形和矩形的性质,全等三角形的性质和判定,等腰三角形的判定,平行线的性质,角平分线的定义等,考查了基本的模型构造:平行和中点构造全等三角形.有较强的综合性.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省无锡市羊尖中学2025届数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京市名校2025届九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省常州市名校2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。