江苏省无锡市丁蜀区2024-2025学年数学九上开学经典试题【含答案】
展开这是一份江苏省无锡市丁蜀区2024-2025学年数学九上开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)四边形的四条边长依次为a、b、c、d,其中a,c为对边且满足,那么这个四边形一定是( )
A.任意四边形B.对角线相等的四边形
C.平行四边形D.对角线垂直的四边形
2、(4分)下列说法正确的是( )
A.是二项方程B.是二元二次方程
C.是分式方程D.是无理方程
3、(4分) 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1B.2C.3D.4
4、(4分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是( )
A.∠A=∠BB.∠A=∠CC.AC=BDD.AB⊥BC
5、(4分)如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )
A.87B.91C.103D.111
6、(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是( )
A.10B.C.D.2
7、(4分)已知直线(m,n为常数)经过点(0,-4)和(3,0),则关于x的方程的解为
A.B.C.D.
8、(4分)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;② ;③ACBE=12;④3BF=4AC;其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据的平均数是则这组数据的方差为__________.
10、(4分)如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.
11、(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.
12、(4分)如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.
13、(4分)如图,正方形的边长为5 cm,是边上一点,cm.动点由点向点运动,速度为2 cm/s ,的垂直平分线交于,交于.设运动时间为秒,当时,的值为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于点D,CD=1,延长AC到E,使AE=AB,连接DE,BE.
(1)求BD的长;
(2)求证:DA=DE.
15、(8分)(1)计算:(-1)2019-|-4|+(3.14-π)0+()-1
(2)先化简,再求值:(1-)÷,再从-1,0,1和2中选一个你认为合适的数作为x的值代入求值.
16、(8分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.
(1)求购买1块电子白板和一台笔记本电脑各需多少元?
(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?
(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?
17、(10分)如图,⊿是直角三角形,且,四边形是平行四边形,为的中点,平分,点在上,且.
求证:
18、(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________
20、(4分)已知分式方程+=,设,那么原方程可以变形为__________
21、(4分)如图,在中,是的角平分线,,垂足为E,,则的周长为________.
22、(4分)若分式方程有增根x=2,则a=___.
23、(4分)如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上,判断△ABC和△DEF是否相似,并说明理由.
25、(10分)如图,四边形ABCD中, BA=BC, DA=DC,我们把这种两组邻边分别相等的四边形叫做“筝形”, 其对角线AC、BD交于点M,请你猜想关于筝形的对角线的一条性质,并加以证明.
猜想:
证明:
26、(12分)已知点E是正方形ABCD内一点,连接AE,CE.
(1)如图1,连接,过点作于点,若,,四边形的面积为.
①证明:;
②求线段的长.
(2)如图2,若,,,求线段,的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
题中给出的式子我们不能直观的知道四边形的形状,则我们可以先首先把
变形整理,先去括号,再移项之后,可利用完全平方差的公式得到边之间的关系.从而判断四边形的形状.
【详解】
两个非负数相加得零,只有0+0=0这种情况
故
所以
故得到两组对边相等,则四边形为平行四边形
故答案为C
本题通过式与形的结合,考察了非负数的性质和平行四边形的判定.需要了解的知识点有:两个非负数相加得零,只有0+0=0这种情况;两组对边相等的四边形是平行四边形.
2、A
【解析】
根据整式方程、分式方程和无理方程的概念逐一判断即可得.
【详解】
A.方程是一般式,且方程的左边只有2项,此方程是二项方程,此选项正确;
B.x2y−y=2是二元三次方程,此选项错误;
C.是一元一次方程,属于整式方程,此选项错误;
D.是一元二次方程,属于整式方程;
故选A.
本题主要考查无理方程,解题的关键是掌握整式方程、分式方程和无理方程的定义.
3、C
【解析】
试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=1,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=1.
∴EP+FP的最小值为1.
故选C.
考点:菱形的性质;轴对称-最短路线问题
4、B
【解析】
【分析】由矩形的判定方法即可得出答案.
【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;
B、∠A=∠C不能判定这个平行四边形为矩形,错误;
C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;
D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,
故选B.
【点睛】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.
5、D
【解析】
根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.
【详解】
解:∵第①个图案中“●”有:1+3×(0+2)=7个,
第②个图案中“●”有:1+4×(1+2)=13个,
第③个图案中“●”有:1+5×(2+2)=21个,
第④个图案中“●”有:1+6×(3+2)=31个,
…
∴第9个图案中“●”有:1+11×(8+2)=111个,
故选:D.
本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.
6、D
【解析】
∵3、a、4、6、7,它们的平均数是5,
∴(3+a+4+6+7)=5,
解得,a=5
S2=[(3-5)2+(5-5)2+(4-5)2+(6-5)2+(7-5)2]
=2,
故选D.
7、C
【解析】
将点(0,−4)和(1,0)代入y=mx+n,求出m,n的值,再解方程mx−n=0即可.
【详解】
解:∵直线y=mx+n(m,n为常数)经过点(0,−4)和(1,0),
∴n=−4,1m+n=0,解得:m=,n=−4,
∴方程mx−n=0即为:x+4=0,解得x=−1.
故选:C.
本题考查了一次函数与一元一次方程,待定系数法求一次函数的解析式,解一元一次方程.求出m,n的值是解题的关键.
8、C
【解析】
选项①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;
②易证△ADE∽△ACD,得DE:DA=DC:AC=3:AC,AC不一定等于6;
③根据相似三角形的判定定理得出△BED∽△BDA,再由相似三角形的对应边成比例即可得出结论;
④连接DM,可证DM∥BF∥AC,得FM:MC=BD:DC=4:3;易证△FMB∽△CMA,得比例线段求解.
【详解】
∠AED=90°−∠EAD,∠ADC=90°−∠DAC,
∵AD平分∠BAC
∴∠EAD=∠DAC,
∴∠AED=∠ADC.
故①选项正确;
∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故②不一定正确;
由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC⋅BE=BD⋅DC=12.
故③选项正确;
连接DM,则DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=4:3;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,
∴3BF=4AC.
故④选项正确.
综上所述,①③④正确,共有3个.
故选C.
此题考查相似三角形的判定与性质,角平分线的性质,解题关键在于作辅助线.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8
【解析】
根据平均数的公式计算出x后,再运用方差的公式即可解出本题.
【详解】
x=6×5−2−6−10−8=4,
S=[(2−6) +(6−6) +(4−6) +(10−6) +(8−6) ]=×40=8,
故答案为:8.
此题考查算术平均数,方差,解题关键在于掌握运算法则
10、
【解析】
由四边形ABCD为菱形性质得DC∥AB,则同旁内角互补,得∠CDE+∠DEB=180°,
结合DE⊥AB,则DE⊥DC,已知∠DCE=30°,设DE=x, 用勾股定理把DC、AD、和DE用含x的代数式表示,在Rt△AED中,利用勾股列关系式求得x=, 则.
【详解】
解:∵四边形ABCD为菱形,
∴DC∥AB,
∴∠CDE+∠DEB=180°,
∵DE⊥AB,
∴DE⊥DC,
∵∠DCE=30°,
设DE=x, 则EC=2x,
,
∴AD=DC=,
在Rt△AED中,有AD2=DE2+AE2 ,
解得x=,
,
故答案为:.
本题考查菱形的基本性质,能够灵活运用勾股定理是本题关键.
11、.
【解析】
根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y即可.
【详解】
解:∵菱形ABCD中,∠ABC=120°,
∴AB=BC=CD=DA,∠A=60°,
∴AB=BC=CD=DA=BD=3+1=4,
∴∠ADB=∠ABD=60°,
由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,
∵∠DFG+∠DGF=180°-60°=120°,∠BGE+∠DGF=180°-60°=120°,
∴∠DFG=∠BGE,
∴△BGE∽△DFG,
∴ ,
设AF=x=FG,AE=y=EG,则:DF=4-x,BE=4-y,
即: ,
当 时,即:x= ,
当 时,即:x= ,
∴ ,
解得:y1=0舍去,y2=,
故答案为:.
本题考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG的关系式,是解决问题的关键.
12、1
【解析】
根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.
【详解】
解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20−2x.
解得x=1,
故答案为:1.
本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.
13、2
【解析】
连接ME,根据MN垂直平分PE,可得MP=ME,当时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t 的值.
【详解】
连接ME
根据MN垂直平分PE
可得为等腰三角形,即ME=PM
故答案为2.
本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.
三、解答题(本大题共5个小题,共48分)
14、 (1)BD=1;(1)证明见解析.
【解析】
(1)根据题意可知∠CAB=60°,想办法证明DA=DB=1CD即可;
(1)由题意可知三角形ABE是等边三角形,然后在证明Rt△DCA≌Rt△DCE,即可求证.
【详解】
(1)∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB,
∴∠CAB=60°=1×∠CAD,
∴∠CAD=∠DAB=30°;,
∴∠DAB=∠DBA=30°,
∴BD=DA=1CD=1.
(1)∵AE=AB,在Rt△ABC中,∠ACB=90°,∠B=30°,
∴∠EAB=60°,
∴△ABE是等边三角形,
∵BC⊥AE,
∴AC=CE,
∵∠ACD=∠DCE=90°,CD=CD,
∴Rt△DCA≌Rt△DCE(SAS),
∴DA=DE.
本题主要考查了含30°角的直角三角形,解题的关键是掌握角平分线的性质以及等边三角形的性质,此题难度不大.
15、(1)-1;(2)x=-1时,原式=.
【解析】
(1)根据绝对值.零指数幂和负整数指数幂可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后从-1,0,1和2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.
【详解】
解:(1)(-1)2019-|-4|+(3.14-π)0+()-1
=(-1)-4+1+3
=-1;
(2)(1-)÷
=
=
=,
当x=-1时,原式=.
本题考查分式的化简求值.零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.
16、(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元
【解析】
(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案.
(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可.
(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.
【详解】
(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:
,解得:.
答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.
(2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得:
,解得:.
∵a为整数,∴a=99,100,101,则电脑依次买:297,296,295.
∴该校有三种购买方案:
方案一:购买笔记本电脑295台,则购买电子白板101块;
方案二:购买笔记本电脑296台,则购买电子白板100块;
方案三:购买笔记本电脑297台,则购买电子白板99块.
(3)设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,
则W=4000z+15000(396﹣z)=﹣11000z+5940000,
∵W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)
∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元.
17、证明见解析.
【解析】
分析:延长DE交AB于点G,连接AD.构建全等三角形△AED≌△DFB(SAS),则由该全等三角形的对应边相等证得结论.
详解:证明:延长DE交AB于点G,连接AD.
∵四边形BCDE是平行四边形,
∴ED∥BC,ED=BC.
∵点E是AC的中点,∠ABC=90°,
∴AG=BG,DG⊥AB.
∴AD=BD,
∴∠BAD=∠ABD.
∵BD平分∠ABC,
∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.
又BF=BC,
∴BF=DE.
∴在△AED与△DFB中,
,
∴△AED≌△DFB(SAS),
∴AE=DF,即DF=AE.
点睛:本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
18、(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.
【解析】
(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;
(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.
【详解】
试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,
∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;
(2)当∠B=30°时,四边形ACEF是菱形;理由如下:
∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,
又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.
本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20或22
【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.
【详解】
根据题意可得矩形的长为7
当形成的直角等腰三角形的直角边为3时,则矩形的宽为3
当形成的直角等腰三角形的直角边为4时,则矩形的宽为4
矩形的宽为3或4
周长为或
故答案为20或22
本题主要考查等腰直角三角形的性质,关键在于确定宽的长.
20、=
【解析】
【分析】运用整体换元法可得到结果.
【详解】设,则分式方程+=,可以变形为=
故答案为:=
【点睛】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.
21、;
【解析】
在△ACD、△ADE、△DEC都是含有30°的直角三角形,利用边之间的关系,得出各边长,从而得出△ABC的周长.
【详解】
∵∠C=90°,∠B=30°,DE=1
∴在Rt△DEB中,DB=2,EB=
∵AD是∠CAB的角平分线
∴CD=DE=1,∠CAD=∠DAE=30°
∴在Rt△ACD中,AD=2,
同理,在Rt△ADE中,AD=2,AE=
∴△ABC的周长=AE+EB+BD+DC+CA=3+3
故答案为:3+3.
本题考查含30°角的直角三角形、角平分线的性质,解题关键是得出△ACD、△ADE、△DEC都是含有30°的直角三角形.
22、﹣2.
【解析】
先化简分式方程,再根据分式方程有增根的条件代入方程,最后求出方程的解即可.
【详解】
去分母得:x+2+ax=3x﹣6,
把x=2代入得:4+2a=0,
解得:a=﹣2,
故答案为:﹣2.
此题考查分式方程的解,解题关键在于掌握运算法则
23、3
【解析】
由菱形的周长为24,可求菱形的边长为6,则可以求EF.
【详解】
解:∵菱形ABCD的周长是24,∴AB=AB=BC=DC=24÷4=6,∵F为对角线AC、BD交点,∴F为DB的中点,又∵E为AD的中点,∴EF=AB=3,故答案为3.
本题考查了菱形的性质,熟练掌握并灵活运用是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、△ABC和△DEF相似,理由详见解析
【解析】
首先根据小正方形的边长,求出△ABC和△DEF的三边长,然后判断它们是否对应成比例即可.
【详解】
△ABC和△DEF相似,理由如下:
由勾股定理,得:AC=,AB=2,BC=5,
DF=2,DE=4, EF=2,
,
所以,△ABC∽△DEF.
本题考查相似三角形的判定,找准对应边成比例即可.
25、筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC;证明见解析
【解析】
利用SSS定理证明△ABD≌△CBD,可得∠ABD=∠CBD,∠ADB=∠CDB,从而可写出关于筝形的对角线的一条性质,筝形有一条对角线平分一组对角.
【详解】
解:筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC
证明:∵在△ABD和△CBD中
BA=BC,DA=DC,BD=BD
∴△ABD≌△CBD(SSS)
∴∠ABD=∠CBD,∠ADB=∠CDB
即BD平分∠ABC,且BD平分∠ADC.
本题考查全等三角形的判定及性质,掌握SSS定理及全等三角形对应角相等是本题的解题关键.
26、(1)①证明见解析;②AE=;(2),.
【解析】
(1)①由正方形性质可得:AB=BC,∠ABC=90°,再证明△ABF≌△BCE(AAS)即可;②设AF=BE=m,由四边形ABCE的面积=△ABE面积+△BCE面积,可列方程求出AF,然后利用勾股定理可得AE的长;
(2)过A作AF⊥CE于F,连接AC,由,可得,再由△AEF、△ABC均为等腰直角三角形及勾股定理即可求得AE和CE的长.
【详解】
解:(1)①证明:∵ABCD是正方形,
∴AB=BC,∠ABC=90°
∴∠ABF+∠CBE=90°
∵AF⊥BE
∴∠AFB=∠BEC=90°
∴∠ABF+∠BAF=90°
∴∠BAF=∠CBE
∴△ABF≌△BCE(AAS)
∴AF=BE;
②∵△ABF≌△BCE(AAS)
∴BF=CE=2,设AF=BE=m,
∵四边形ABCE的面积为.
∴S△BCE+S△ABE=,即×2m+m2=,
解得:m1=5,m2=−7(舍),
∴AF=BE=5,EF=3
∴AE=;
(2)如图2,过A作AF⊥CE于F,连接AC,则∠F=90°,
∵∠AEC=135°
∴∠AEF=180°−∠AEC=45°=∠EAF,
∴△AEF是等腰直角三角形,
∴AF=EF=AE,
∵,即:,
∴EF+CE=,即CF=,
∵△ABC是等腰直角三角形,AB=4
∴AC=,
∴,
∴AE=AF=4,EF=AF=,
∴CE=CF−EF=.
本题考查了正方形性质,等腰直角三角形性质,勾股定理等知识点,解题关键是添加辅助线构造直角三角形,利用勾股定理建立方程求解.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份江苏省无锡市丁蜀区2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省无锡市宜兴市丁蜀区数学九上开学统考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市宜兴市丁蜀区2023-2024学年九上数学期末检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列事件中,是必然事件的是,关于的一元二次方程根的情况是等内容,欢迎下载使用。