![江苏省苏州昆山市2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16284837/0-1729725608819/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省苏州昆山市2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16284837/0-1729725608878/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省苏州昆山市2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16284837/0-1729725608889/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省苏州昆山市2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开
这是一份江苏省苏州昆山市2025届九年级数学第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列式子运算正确的是( )
A.B.
C.D.
2、(4分)已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为( )
A.4B.5C.6D.7
3、(4分)关于的方程的解是正数,则的取值范围是( )
A.B.C.D.
4、(4分)下列命题是真命题的是( )
A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)
B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等
C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等
D.平行四边形的对角线相等
5、(4分)小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是( ).
A.B.C.D.
6、(4分)欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
A.的长B.的长C.的长D.的长
7、(4分)二次根式有意义,a的范围是( )
A.a>﹣1B.a<﹣1C.a=±1D.a≤1
8、(4分)对于二次函数的图象与性质,下列说法正确的是( )
A.对称轴是直线,最大值是2B.对称轴是直线,最小值是2
C.对称轴是直线,最大值是2D.对称轴是直线,最小值是2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某超市促销活动,将三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装三种水果;乙种方式每盒分别装三种水果 .甲每盒的总成本是每千克 水果成本的倍,每盒甲的销售利润率为;每盒甲比每盒乙的售价低;每盒丙在成本上提高标价后打八折出售,获利为每千克 水果成本的倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为时,则销售总利润率为__________.
10、(4分)在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形 、正方形 、…、正方形,使得点 …在直线l上,点 …在y轴正半轴上,则点 的横坐标是__________________。
11、(4分)若直角三角形的两边长分别为1和2,则斜边上的中线长为_____.
12、(4分)如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.
13、(4分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知a=,b=,
(1)求ab,a+b的值;
(2)求的值.
15、(8分)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60.
(1)求证:ABAC;
(2)若DC=2,求梯形ABCD的面积.
16、(8分)如图,反比例函数的图象经过点
(1)求该反比例函数的解析式;
(2)当时,根据图象请直接写出自变量的取值范围.
17、(10分)如图,平行四边形ABCD中,点E是AD的中点,连结CE并延长,与BA的延长线交于点F,证明:EF=EC.
18、(10分)已知关于x的方程x2-3x+c=0有两个实数根.
(1)求c的取值范围;
(2)若c为正整数,取符合条件的c的一个值,并求出此时原方程的根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知锐角,且sin=cs35°,则=______度.
20、(4分)用反证法证明“如果,那么.”是真命题时,第一步应先假设________ .
21、(4分)如图,在菱形中,,,以为边作菱形,且;再以为边作菱形,且;.……;按此规律,菱形的面积为______.
22、(4分)甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,汽车行驶时间关于行驶速度的函数表达式是_____.
23、(4分)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.
(1)试说明:∠EFD=(∠C﹣∠B);
(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.
25、(10分)(1)如图1,方格纸中的每个小方格都是边长为1个单位的正方形,的顶点以及点均在格点上.
①直接写出的长为______;
②画出以为边,为对角线交点的平行四边形.
(2)如图2,画出一个以为对角线,面积为6的矩形,且和均在格点上(、、、按顺时针方向排列).
(3)如图3,正方形中,为上一点,在线段上找一点,使得.(要求用无刻度的直尺画图,不准用圆规,不写作法,保留画图痕迹)
26、(12分)解不等式组:,并把解集在数轴上表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
利用二次根式的加减法对A、B进行判断;根据分母有理化对C进行判断;根据完全平方公式对D进行判断.
【详解】
解:A、原式=﹣,所以A选项错误;
B、与不能合并,所以B选项错误;
C、原式=,所以C选项错误;
D、原式=9﹣6 +10=19﹣6 ,所以D选项正确.
故选:D.
题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
2、D
【解析】
根据平均数的性质,所有数之和除以总个数即可得出平均数.
【详解】
依题意得:a1+4+a2-1+a3+1+a4-5+a5+5
=a1+a2+a3+a4+a5+10
=35,
所以平均数为35÷5=1.
故选D.
本题考查的是平均数的定义,本题利用了整体代入的思想,解题的关键是了解算术平均数的定义,难度不大.
3、D
【解析】
先求得分式方程的解,再由题意可得关于x的不等式,解不等式即得答案.
【详解】
解:解方程,得,
因为方程的解是正数,所以,
所以,解得.
故选D.
本题考查了分式方程的解法和不等式的解法,熟练掌握分式方程和不等式的解法是解题的关键.
4、C
【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、将点A(-2,3)向上平移3个单位后得到的点的坐标为(-2,6),是假命题;B、三角形的三条角平分线的交点到三角形的三条边的距离相等,是假命题;C、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,是真命题;D、平行四边形的对角线互相平分,是假命题;故选:C.
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.
5、D
【解析】
试题分析:跑步时间为x秒,当两人距离为0时,即此时两个人在同一位置,此时,即时,两个人距离为0,当小华到达终点时,小明还未到达,小华到达终点的时间为s,此时小明所处的位置为m,两个人之间的距离为m。
考点:简单应用题的函数图象
点评:此题较为简单,通过计算两个人相遇时的时间,以及其中一个人到达终点后,两个人之间的距离,即可画出图象。
6、B
【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
【解答】用求根公式求得:
∵
∴
∴
AD的长就是方程的正根.
故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
7、D
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
解:∵二次根式有意义,
∴1﹣a≥0,
解得:a≤1.
故选:D.
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
8、A
【解析】
根据抛物线的图象与性质即可判断.
【详解】
解:由抛物线的解析式:y=-(x-1)2+2,
可知:对称轴x=1,
开口方向向下,所以有最大值y=2,
故选:A.
本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20%.
【解析】
分别设每千克A、B、C三种水果的成本为x、y、z,设丙每盒成本为m,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x表示出来即可求解.
【详解】
设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:
6x+3y+z=12.5x,
∴3y+z=6.5x,
∴每盒甲的销售利润=12.5x•20%=2.5x
乙种方式每盒成本=2x+6y+2z=2x+13x=15x,
乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,
∴每盒乙的销售利润=20x-15x=5x,
设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,
解得m=10x.
∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,
总成本为:12.5x•2+15x•2+10x•5=105x,
总利润为:2.5x•2+5x×2+1.2x•5=21x,
销售的总利润率为 ×100%=20%,
故答案为:20%.
此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.
10、
【解析】
根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得所求点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.
【详解】
∵观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,
∴An(2n-1,2n-1-1)(n为正整数).
观察图形可知:点Bn是线段CnAn+1的中点,
∴点Bn的坐标是(2n-1,2n-1).
故答案为.
此题考查一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“An(2n-1,2n-1-1)(n为正整数)”是解题的关键.
11、1或
【解析】
分①2是直角边,利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答;②2是斜边时,根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
①若2是直角边,则斜边=,
斜边上的中线=,
②若4是斜边,则斜边上的中线=,
综上所述,斜边上的中线长是1或.
故答案为1或.
本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,难点在于分情况讨论.
12、
【解析】
先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.
【详解】
解:∵四边形是平行四边形,
∴对角线把平行四边形分成面积相等的四部分,
观察发现:图中阴影部分面积=S四边形,
∴针头扎在阴影区域内的概率为;
故答案为:.
此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.
13、y=
【解析】
先根据条件算出注满容器还需注水200m3 , 根据注水时间=容积÷注水速度,据此列出函数式即可.
【详解】
解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.
本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)ab=1,a+b=2;(2)1.
【解析】
(1)直接利用平方差公式分别化简各式进而计算得出答案;
(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.
【详解】
(1)∵
∴
(2)
=1.
此题主要考查了分母有理化,正确得出有理化因式是解题关键.
15、(1)见解析;(2)
【解析】
(1)利用等腰梯形的性质可求得,再利用平行的性质及等边对等角可求出,然后根据三角形内角和即可求出,从而得到结论;
(2)过点作于点,利用含30°角的直角三角形的性质可求出BE、BC,根据勾股定理求出AE,然后利用面积公式进行计算即可.
【详解】
证明:(1)∵,,,
∴,,
又∵,
∴,
∴,
∴,
∴;
(2)过点作于,
∵,
∴,
又∵,
∴,
∴在中,,
∵,,
∴,
∴.
本题考查了等腰梯形的性质,含30°角的直角三角形的性质,等边对等角及勾股定理,需要熟记基础的性质定理,熟练应用.
16、(1)(2)或
【解析】
(1)首先设反比例函数解析式为y=,把点(-1,3)代入反比例函数解析式,进而可以算出k的值,进而得到解析式;
(2)根据反比例函数图象可直接得到答案.
【详解】
(1)设反比例函数解析式为,把点代入得:,
∴函数解析式为;(2)或.
此题主要考查了待定系数法求反比例函数解析式,以及利用函数图象求自变量的值,关键是掌握凡是反比例函数图象经过的点必能满足解析式.
17、见解析.
【解析】
由题意可得AE=DE,∠FEA=∠DEC,∠FAE=∠D,则可证△AEF≌△DEC,则可得结论.
【详解】
证明:∵四边形ABCD是平行四边形
∴AB∥CD
∴∠EAF=∠EDC
∵E是AD中点
∴AE=DE
∵AE=DE,∠FEA=∠DEC,∠FAE=∠EDC
∴△EAF≌△DEC
∴EF=EC
本题考查了平行四边形的性质,全等三角形的性质与判定,关键是熟练运用这些性质解决问题.
18、(1)c≤;(1)当c=1时,x1=1,x1=1;当c=1时,x1=,x1=
【解析】
(1)先根据方程有两个实数根可知△≥0,由△≥0可得到关于c的不等式,求出c的取值范围即可;
(1)由(1)中c的取值范围得出符合条件的c的正整数值,代入原方程,利用因式分解法或求根公式即可求出x的值.
【详解】
(1)解:∵方程有两个实根,∴△=b1-4ac=9-4c≥0,∴c≤;
(1)解:∵c≤,且c为正整数,∴c=1或c=1.
取c=1,方程为x1-3x+1=0,∴(x-1)(x-1)=0
解得:x1=1,x1=1.
也可如下:
取c=1,方程为x1-3x+1=0,解得:x1= ,x1=.
本题考查了根的判别式以及解一元二次方程.根据方程的特征熟练选择合适的解法是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
对于任意锐角A,有sinA=cs(90°-A),可得结论.
【详解】
解:∵sinα=cs35°,
∴α=90°-35°=1°,
故答案为:1.
此题考查互余两角的三角函数,关键是根据互余两角的三角函数的关系解答.
20、a≥0
【解析】
用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.
【详解】
解: “如果,那么.”是真命题时 ,用反证法证明第一步应假设.
故答案为:
本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.
21、或.
【解析】
根据题意求出每个菱形的边长以及面积,从中找出规律.
【详解】
解:当菱形的边长为a,其中一个内角为120°时,
其菱形面积为:a2,
当AB=1,易求得AC=,此时菱形ABCD的面积为:=×1,
当AC=时,易求得AC1=3,此时菱形面积ACC1D1的面积为:=×()2,
当AC1=3时,易求得AC2=3,此时菱形面积AC1C2D2的面积为: =×()4,
……,
由此规律可知:菱形AC2018C2019D2019的面积为×()2×2019=.,
故答案为:或.
本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.
22、
【解析】
根据实际意义,写出函数的解析式即可.
【详解】
解:根据题意有:;
故与之间的函数图解析式为,
故答案为:.
本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
23、1
【解析】
由根与系数的关系可得a+b=﹣2,a2+2a-9=0,继而将a2+a﹣b变形为a2+2a-(a+b),然后将数值代入进行计算即可得.
【详解】
∵a,b为一元二次方程x2+2x﹣9=0的两根,
∴a+b=﹣2,a2+2a-9=0,
∴a2+2a =9,
∴a2+a﹣b=a2+2a﹣a-b=(a2+2a)-(a+b)=9+2=1,
故答案为1.
二、解答题(本大题共3个小题,共30分)
24、(1)见详解;(2)成立,证明见详解.
【解析】
(1) 根据三角形内角和定理以及角平分线的定义得到∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),然后根据三角形的外角的性质可以得到∠FEC=∠B+∠BAE,求得∠FEC,再根据直角三角形的两个锐角互余即可求得结论;
(2)根据(1)可以得到∠AEC=90°+(∠B﹣∠C),根据对顶角相等即可求得∠DEF,然后利用直角三角形的两个锐角互余即可求解.
【详解】
解:(1)∵AE平分∠BAC,
∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)
=90°﹣(∠B+∠C),
∵∠FEC=∠B+∠BAE,
则∠FEC=∠B+90°﹣(∠B+∠C)
=90°+(∠B﹣∠C),
∵FD⊥EC,
∴∠EFD=90°﹣∠FEC,
则∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B);
(2)成立.
证明:同(1)可证:∠AEC=90°+(∠B﹣∠C),
∴∠DEF=∠AEC=90°+(∠B﹣∠C),
∴∠EFD=90°﹣[90°+(∠B﹣∠C)]
=(∠C﹣∠B).
此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.
25、解:(1)①;②详见解析;(2)详见解析;(2)详见解析
【解析】
(1)①由勾股定理可得AB的长;
②连接AO,CO并延长一倍得到,再顺次连接成平行四边形;
(2)画一个对角线长,矩形两边长为,)的矩形即可;
(2)连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.
【详解】
解:(1)①由勾股定理可得;
②如图1.连接AO,CO并延长一倍得到,再顺次连接成平行四边形;
(2)如图2(对角线长,矩形两边长为,).
(2)如图2.连接AE,BD交于点M,过点M作射线CM交AB于点F,则点F即为所求.
本题考查了作图-作平行四边形和矩形,也考查了特殊四边形的性质.
26、
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解不等式,得:,
解不等式,得:,
将不等式的解集表示在数轴上如下:
则不等式组的解集为,
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份江苏省苏州昆山市、太仓市2024-2025学年九上数学开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省昆山市、太仓市2025届九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省苏州区学校七校联考数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![语文朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)