江苏省南京五中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】
展开
这是一份江苏省南京五中学2024-2025学年数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列所给图形中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
2、(4分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有( )
A.1个B.2个C.3个D.4个
3、(4分)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是( )
A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100
4、(4分)以下运算错误的是( )
A.B.
C.D.
5、(4分) 如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于( )
A.12﹣6B.14﹣6C.18﹣6D.18+6
6、(4分)某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是( )
A.36B.45C.48D.50
7、(4分)关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是( )
A.①②③B.②③④C.①③④D.①②③④
8、(4分)计算( )
A.7B.-5C.5D.-7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.
10、(4分)直角三角形有两边长为3和4,则斜边长为_____.
11、(4分)如图,将长8cm,宽4cm的矩形ABCD纸片折叠,使点A与C重合,则折痕EF的长为_________cm.
12、(4分)将点,向右平移个单位后与点关于轴对称,则点的坐标为______.
13、(4分)已知关于x的不等式组的整数解共有5个,则a的取值范围是_________
三、解答题(本大题共5个小题,共48分)
14、(12分)已知,直线y=2x+3与直线y=﹣2x﹣1.
(1)求两直线与y轴交点A,B的坐标;
(2)求两直线交点C的坐标;
(3)求△ABC的面积.
15、(8分)如图,正方形,点在边上,为等腰直角三角形.
(1)如图1,当,求证;
(2)如图2,当,取的中点,连接,求证:
16、(8分)已知一次函数y=﹣x+1.
(1)在给定的坐标系中画出该函数的图象;
(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.
17、(10分)如图,直线的函数解析式为,且与轴交于点,直线经过点、,直线、交于点.
(1)求直线的函数解析式;
(2)求的面积;
(3)在直线上是否存在点,使得面积是面积的倍?如果存在,请求出坐标;如果不存在,请说明理由.
18、(10分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).
(1)按下列要求作图:
①将△ABC向左平移4个单位,得到△A1B1C1;
②将△A1B1C1绕点B1逆时针旋转90°,得到△A1B1C1.
(1)求点C1在旋转过程中所经过的路径长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)对于一次函数,若,那么对应的函数值y1与y2的大小关系是________.
20、(4分)不改变分式的值,使分子、分母的第一项系数都是正数,则=_____.
21、(4分)如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.
22、(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是_____.
23、(4分)已知﹣=16,+=8,则﹣=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分()的小组称为“学童”组,60~70分()的小组称为“秀才”组,70~80分()的小组称为“举人”组,80~90分()的小组称为“进士”组,90~100分()的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:
(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;
(2)在此次比赛中,抽取学生的成绩的中位数在 组;
(3)学校决定对成绩在70~100分()的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?
25、(10分)阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.
请回答:
(1)①图1中△ABC的面积为________;
②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2、的格点△DEF.
26、(12分)如图,▱ABCD中,E,F为对角线AC上的两点,且BE∥DF;求证:AE=CF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
结合中心对称图形和轴对称图形的概念求解即可.
【详解】
解:A、是轴对称图形,不是中心对称图形.故本选项错误;
B、不是轴对称图形,是中心对称图形.故本选项错误;
C、是轴对称图形,不是中心对称图形.故本选项错误;
D、既是中心对称图形,又是轴对称图形.故本选项正确;
故选:D.
本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【解析】
直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.
【详解】
①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.
故选:.
此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
3、B
【解析】
试题分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.
因此,y=100×0.05x,
即y=5x.
故选B.
考点:函数关系式.
4、B
【解析】
A.,正确;B.=5,则原计算错误;C.,正确;D.,正确,故选B.
5、C
【解析】
如图,首先运用旋转变换的性质证明∠B'AH=30°,此为解决问题的关键性结论;运用直角三角形的边角关系求出B'H的长度,进而求出△AB'H的面积,即可解决问题.
【详解】
如图,由题意得:∠CAC'=15°,∴∠B'AH=45°﹣15°=30°,∴B'H==6,∴S△AB'H,∴S△AHC'=18﹣6.
故选C.
本题考查了旋转变换的性质、勾股定理、三角形的面积公式等几何知识点及其应用问题;牢固掌握旋转变换的性质、勾股定理、三角形的面积公式等几何知识点是灵活运用、解题的基础和关键.
6、D
【解析】
根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.
【详解】
解:在这组数据50、45、36、48、50中,
50出现了2次,出现的次数最多,
则这组数据的众数是50,
故选D.
考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.
7、D
【解析】
利用正方形的判定方法逐一分析判断得出答案即可.
【详解】
解:①对角线互相垂直且相等的平行四边形是正方形,故正确;
②对角线互相垂直的矩形是正方形,故正确;
③对角线相等的菱形是正方形,故正确;
④对角线互相垂直平分且相等的四边形是正方形,故正确;
故选:D.
本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.
8、C
【解析】
利用最简二次根式的运算即可得.
【详解】
故答案为 C
本题考查二次根式的运算,掌握同类二次根式的运算法则及分母有理化是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、丁;
【解析】
试题解析:丁的平均数最大,方差最小,成绩最稳当,
所以选丁运动员参加比赛.
故答案为丁.
10、4或1
【解析】
直角三角形中斜边为最长边,无法确定边长为4的边是否为斜边,所以要讨论(1)边长为4的边为斜边;(2)边长为4的边为直角边.
【详解】
解:(1)当边长为4的边为斜边时,该直角三角形中斜边长为4;
(2)当边长为4的边为直角边时,则根据勾股定理得斜边长为=1,
故该直角三角形斜边长为4cm或1cm,
故答案为:4或1.
本题考查了勾股定理在直角三角形中的运用,考查了分类讨论思想,本题中运用分类讨论思想讨论边长为4的边是直角边还是斜边是解题的关键
11、
【解析】
过点F作AB的垂线,垂足为H,设DF=X,则,C=4,FC=,
,即DF=3,在直角三角形FHE中,
12、 (4,-3)
【解析】
让点A的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.
【详解】
将点A向右平移4个单位后,横坐标为0+4=4,纵坐标为3
∴平移后的坐标是(4,3)
∵平移后关于x轴对称的点的横坐标为4,纵坐标为-3
∴它关于x轴对称的点的坐标是(4,-3)
此题考查点的平移,关于x轴对称点的坐标特征,解题关键在于掌握知识点
13、-3
相关试卷
这是一份江苏省南京五十中学2024-2025学年九年级数学第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京市扬子第一中学2024-2025学年九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省南京市南京航天大附属初级中学2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。