吉林省前郭县联考2024-2025学年九上数学开学统考模拟试题【含答案】
展开
这是一份吉林省前郭县联考2024-2025学年九上数学开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是( )
A.10 B.9 C.8 D.6
2、(4分)如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=,BO=3,那么AC的长为( )
A.2B.C.3D.4
3、(4分)如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为( )
A.1B.C.D.
4、(4分)在一次中学生田径运动会上,男子跳高项目的成绩统计如下:
表中表示成绩的一组数据中,众数和中位数分别是
A.,B.,C.,D.,
5、(4分)下列命题,其中正确的有( )
①平行四边形的两组对边分别平行且相等
②平行四边形的对角线互相垂直平分
③平行四边形的对角相等,邻角互补
④平行四边形只有一组对边相等,一组对边平行
A.1个B.2个C.3个D.4个
6、(4分)计算:=( )(a>0,b>0)
A.B.C.2aD.2a
7、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )
A.3B.3.5C.2.5D.2.8
8、(4分)一次函数 y mx 的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )
A.1B.3C.1D. 1 或 3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.
10、(4分)已知在△ABC中,∠ABC和∠ACB的角平分线交于O,且∠ABC的角平分线与∠ACB的外角平分线交于P,∠OPC和∠OCP角平分线交于H,∠H=117.5°,则∠A=________
11、(4分)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2=_____.
12、(4分)如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________
13、(4分)分解因式b2(x﹣3)+b(x﹣3)=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:﹣3+2.
15、(8分)问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:
问题解决
(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.
16、(8分)如图,把矩形OABC放入平面直角坐标系xO中,使OA、OC分别落在x、y轴的正半轴上,其中AB=15,对角线AC所在直线解析式为y=﹣x+b,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.
(1)求点B的坐标;
(2)求EA的长度;
(3)点P是y轴上一动点,是否存在点P使得△PBE的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.
17、(10分)阅读材料:在实数范围内,当且时 ,我们由非负数的性质知道,所以, 即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值. 则有最小值:请问: 若 , 则当取何值时,代数式取最小值? 最小值是多少?
18、(10分)如图,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连结DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:____ .
20、(4分)设、是方程的两个实数根,则的值为_____.
21、(4分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
22、(4分)把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.
23、(4分)在反比例函数的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是 ;
(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;
(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?
(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)
25、(10分)已知正比例函数与反比例函数.
(1)证明:直线与双曲线没有交点;
(2)若将直线向上平移4个单位后与双曲线恰好有且只有一个交点,求反比例函数的表达式和平移后的直线表达式;
(3)将(2)小题平移后的直线代表的函数记为,根据图象直接写出:对于负实数,当取何值时
26、(12分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.
(1)求的长;
(2)若四边形为平行四边形时,求的周长;
(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】试题解析:设多边形有n条边,由题意得:
110°(n-2)=360°×3,
解得:n=1.
故选:C.
2、D
【解析】
首先利用勾股定理计算AO长,再根据平行四边形的性质可得AC长.
【详解】
∵AC⊥AB,AB=,BO=3,
∴AO==2,
∵四边形ABCD是平行四边形,
∴AC=2AO=4,
故选:D.
此题考查平行四边形的性质,解题关键是掌握平行四边形对角线互相平分.
3、D
【解析】
连接DB,作DH⊥AB于H,如图,∵四边形ABCD为菱形,∴AD=AB=BC=CD,而∠A=60°,∴△ABD和△BCD都是等边三角形,∴∠ADB=∠DBC=60°,AD=BD,在Rt△ABH中,AH=1,AD=2,∴DH=,在△ADE和△BDF中,,∴△ADE≌△BDF,∴∠2=∠1,DE=DF,∴∠1+∠BDE=∠2+∠BDE=∠ADB=60°,∴△DEF为等边三角形,∴EF=DE,而当E点运动到H点时,DE的值最小,其最小值为,∴EF的最小值为.故选D.
4、B
【解析】
根据出现最多的数为众数解答;
按照从小到大的顺序排列,然后找出中间的一个数即为中位数.
【详解】
出现次数最多的数为1.55m,是众数;
21个数按照从小到大的顺序排列,中间一个是1.60m,所以中位数是1.60m.
故选B.
考查了众数,中位数的定义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
5、B
【解析】
根据平行四边形的性质判断即可.
【详解】
解:①平行四边形的两组对边分别平行且相等,正确;②平行四边形的对角线互相平分,但不一定垂直,错误;③平行四边形的对角相等,邻角互补,正确;④平行四边形两组对边分别平行且相等,不是只有一组相等,一组平行,错误,正确的有2个.
故选B.
本题考查了平行四边形的性质,平行四边形的两组对边分别平行且相等,对角线互相平分,对角相等,邻角互补,熟练掌握平行四边形的性质是解题的关键.
6、C
【解析】
根据二次根式的除法法则计算可得.
【详解】
解:原式,
故选C.
本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.
7、C
【解析】
∵EO是AC的垂直平分线,∴AE=CE.
设CE=x,则ED=AD﹣AE=4﹣x.,
在Rt△CDE中,CE2=CD2+ED2,
即x 2=22+(4-x)2,解得x=2.5,
CE的长为2.5
故选C
8、B
【解析】
先根据函数的增减性判断出m的符号,再把点(1,2)代入求出m的值即可.
【详解】
∵一次函数y=mx+|m-1|中y随x的增大而增大,
∴m>1.
∵一次函数y=mx+|m-1|的图象过点(1,2),
∴当x=1时,|m-1|=2,解得m1=3,m2=-1<1(舍去).
故选B.
本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
【详解】
∵四边形CDEF是正方形,AC=5,BC=12,
∴CD=ED,DE∥CF,
设ED=x,则CD=x,AD=5-x,
∵DE∥CF,
∴∠ADE=∠C,∠AED=∠B,
∴△ADE∽△ACB,
∴,
∴,
解得:x=,
故答案为.
此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
10、70°
【解析】
根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A的度数.
【详解】
解:∵∠H=117.5°,
∴∠HCP+∠HPC=180°-117.5°=62.5°,
∵CH平分∠OCP,PH平分∠OPC,
∴∠OCP+∠OPC=2(∠HCP+∠HPC)= 125°,
∴∠BOC=125°,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.
11、-3
【解析】
根据一元二次方程根与系数的关系即可解答.
【详解】
由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2
∴x1+x2+x1x2=﹣3
故答案为﹣3
本题考查了一元二次方程根与系数的关系,解题的关键是熟练运用根与系数的关系.
12、
【解析】
由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.
【详解】
解:连接FD
∵正方形ABCD的边长为4,
∴AB=BC=4,∠B=90°,
∴AC=,
当P与D重合时,PC=ED=PA,即G与A重合,
∴EG的中点为D,即F与D重合,
当点P从D点运动到A点时,则点F运动的轨迹为DF,
∵D是AE的中点,F是EG的中点,
∴DF是△EAG的中位线,
∴DF∥AG,
∵∠CAG=90°,∠CAB=45°,
∴∠BAG=45°,
∴∠EAG=135°,
∴∠EDF=135°,
∴∠FDA=45°,
∴F为正方形ABCD的对角线的交点,CF⊥DF,
此时CF最小,
此时CF=AG=;
故答案为:.
本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.
13、b(x﹣3)(b+1)
【解析】
用提公因式法分解即可.
【详解】
原式= b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).
故答案为:b(x﹣3)(b+1)
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
三、解答题(本大题共5个小题,共48分)
14、﹣
【解析】
直接化简二次根式,进而合并得出答案.
【详解】
原式=4﹣3×3+2×2=﹣.
此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
15、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b
【解析】
(1)画出互相垂直的两直径即可;
(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;
(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.
【详解】
解:(1)如图1所示,
(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,
则直线EF、OM将正方形的面积四等分,
理由是:∵点O是正方形ABCD的对称中心,
∴AP=CQ,EB=DF,
在△AOP和△EOB中
∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,
∴∠AOP=∠BOE,
∵OA=OB,∠OAP=∠EBO=45°,
∴△AOP≌△EOB,
∴AP=BE=DF=CQ,
设O到正方形ABCD一边的距离是d,
则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,
∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,
直线EF、OM将正方形ABCD面积四等份;
(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,
理由是:如图③,连接BP并延长交CD的延长线于点E,
∵AB∥CD,
∴∠A=∠EDP,
∵在△ABP和△DEP中
∴△ABP≌△DEP(ASA),
∴BP=EP,
连接CP,
∵△BPC的边BP和△EPC的边EP上的高相等,
又∵BP=EP,
∴S△BPC=S△EPC,
作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,
由三角形面积公式得:PF=PG,
在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP
∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP
即:S四边形ABQP=S四边形CDPQ,
∵BC=AB+CD=a+b,
∴BQ=b,
∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.
本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.
16、(1)B(9,11);(2)1;(3)存在,P(0,)
【解析】
(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;
(2)在Rt△BCD中,BC=9,BD=AB=11,CD==12,OD=11﹣12=3,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;
(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;
【详解】
解:(1)∵AB=11,四边形OABC是矩形,
∴OC=AB=11,
∴C(0,11),代入y=y=﹣x+b得到b=11,
∴直线AC的解析式为y=﹣x+11,
令y=0,得到x=9,
∴A(9,0),B(9,11).
(2)在Rt△BCD中,BC=9,BD=AB=11,
∴CD==12,
∴OD=11﹣12=3,
设DE=AE=x,
在Rt△DEO中,∵DE2=OD2+OE2,
∴x2=32+(9﹣x)2,
∴x=1,
∴AE=1.
(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.
∵E(4,0),
∴E′(﹣4,0),
设直线BE′的解析式为y=kx+b,则有
解得,
∴直线BE′的解析式为y=x+,
∴P(0,).
故答案为(1)B(9,11);(2)1;(3)存在,P(0,).
本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.
17、x=2时,最小值是1.
【解析】
先提公因式,再根据“均值不等式”的性质计算.
【详解】
根据题意得:x= ,
解得,x1=2,x2=-2(舍去),
则当x=2时,代数式2x+取最小值,最小值是1.
本题考查的是配方法的应用,掌握完全平方公式、“均值不等式”的概念是解题的关键.
18、(1)见解析(2)
【解析】
试题分析:(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;
(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.
【详解】
试题解析:(1)证明:在▱ABCD中,AD∥BC,且AD=BC.
∵F是AD的中点,
∴DF=AD.
又∵CE=BC,
∴DF=CE,且DF∥CE,
∴四边形CEDF是平行四边形;
(2)如图,过点D作DH⊥BE于点H.
在▱ABCD中,∵∠B=60°,
∴∠DCE=60°.
∵AB=4,
∴CD=AB=4,
∴CH=CD=2,DH=2.
在▱CEDF中,CE=DF=AD=3,则EH=1.
∴在Rt△DHE中,根据勾股定理知DE=.
考点:平行四边形的判定与性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先算括号内,再算除法即可.
【详解】
原式=.
故答案为:1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
20、-1
【解析】
根据根与系数的关系可得出,,将其代入中即可得出结论.
【详解】
∵、是方程的两个实数根,
∴,,
∴.
故答案为:-1.
本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.
21、10%.
【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
【详解】
设平均每次降价的百分率为,根据题意列方程得,
,
解得,(不符合题意,舍去),
答:这个百分率是.
故答案为.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.
22、12或2
【解析】
根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当10<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=40-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.
【详解】
由题意,可知当10<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,
第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:
①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.
∵经过第三次操作后所得的矩形是正方形,
∴矩形的宽等于1-a,
即2a-1=(1-a)-(2a-1),
解得a=12;
②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.
则1-a=(2a-1)-(1-a),
解得a=2.
故答案为:12或2.
23、m>1.
【解析】
根据反比例函数的性质得到m-1>0,然后解不等式即可.
【详解】
解:∵在反比例函数y=的图象每一条曲线上,y都随x的增大而减小,
∴m-1>0,
∴m>1.
故答案为m>1.
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC.
【解析】
试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;
(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;
(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;
(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.
试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;
(2)仍成立.
证明:如图2,连接AC、BD.
由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;
(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.
在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.
又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;
(4)O在移动过程中可形成直线AC.
考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.
25、(1)方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点);(2)当时, 当时, ;(3)当或时满足.
【解析】
(1)将和这两函数看成两个不定方程,联立方程组,整理后得方程,再利用根的判别式得出这个方程无解,所以两函数图象没有交点;
(2)向上平移4个单位后,联立方程组,整理后得方程,因为直线与双曲线有且只有一个交点,所以方程有且只有一个解,利用根的判别式得出K的值,从而得到函数表达式;
(3)取时,作出函数图象,观察图象可得到结论.
【详解】
(1)证明:将和这两函数看成两个不定方程,联立方程组得:
两边同时乘得,
整理后得
利用计算验证得:
∵ 所以
方程组无解即没有公共解,也就是两函数图象没有交点(交点即公共点)
(2)向上平移4个单位后,这时刚好与双曲线有且只有一个交点.
联立方程组得:
两边同时乘得,整理后得
因为直线与双曲线有且只有一个交点,
∴方程有且只有一个解,即:,
将方程对应的值代入判别式得:
解得
综上所述:当时,,
当时, ,
(3)题目要求负实数的值,所以我们取时的函数图象情况.图象大致如下图所示:
计算可得交点坐标,
要使,即函数的图象在函数图象的上方即可,
由图可知,当或时函数的图象在函数,
图象的上方,即当或时满足
本题考查了反比例函数和一次函数,是一个综合题,解题时要运用数形结合的思想.
26、(1);(2);(3)BP=或3或.
【解析】
(1)先根据题意推出△ABE是等腰直角三角形,再根据勾股定理计算即可.
(2)首先要推出△CPQ是等腰直角三角形,再根据已知推出各边的长度,然后相加即可.
(3)首先证明△BPE∽△CQP,然后分三种情况讨论,分别求解,即可解决问题.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,
∵BE=CD=3,
∴AB=BE=3,
又∵∠A=45°,
∴∠BEA=∠A=45°,∠ABE=90°,
根据勾股定理得AE==;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠A=∠C=45°,
又∵四边形ABPE是平行四边形,
∴BP∥AB,且AE=BP,
∴BP∥CD,
∴ED=CP=,
∵∠EPQ=45°,
∴∠PQC=∠EPQ=45°,
∴∠PQC=∠C=45°,∠QPC=90°,
∴CP=PQ=,QC=2,
∴△CPQ的周长=2+2;
(3)解:如图,作BH⊥AE于H,连接BE.
∵四边形ABCD是平行四边形,
∴AB=CD=3,AD=BC=AE+ED=,∠A=∠C=45°,
∴AH=BH=,HE=AD-AH-DE=
∴BH=EH,
∴∠EBH=∠HEB=∠EBC=45°,
∴∠EBP=∠C=45°,
∵∠BPQ=∠EPB+∠EPQ=∠C+∠PQC,∠EPQ=∠C,
∴∠EPB=∠PQC,
∴△BPE∽△CQP.
①当QP=QC时,则BP=PE,
∴∠EBP=∠BEP=45°,则∠BPE=90°,
∴四边形BPEF是矩形,
BP=EF=,
②当CP=CQ时,则BP=BE=3,
③当CP=PQ时,则BE=PE=3,∠BEP=90°,
∴△BPE为等腰三角形,
∴BP2=BE2+PE2,
∴BP=,
综上:BP=或3或.
本题利用平行四边形的性质求解,其中运用了分类讨论的思想,这是解题关键.
题号
一
二
三
四
五
总分
得分
成绩
人数
2
8
6
4
1
相关试卷
这是一份吉林省舒兰市2024-2025学年数学九上开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省柳河县2024-2025学年九上数学开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省大安县联考2025届九上数学开学统考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。