![湖南省长沙市中学雅培粹中学2025届九上数学开学综合测试模拟试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16281752/0-1729642536512/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省长沙市中学雅培粹中学2025届九上数学开学综合测试模拟试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16281752/0-1729642536575/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省长沙市中学雅培粹中学2025届九上数学开学综合测试模拟试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16281752/0-1729642536607/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖南省长沙市中学雅培粹中学2025届九上数学开学综合测试模拟试题【含答案】
展开
这是一份湖南省长沙市中学雅培粹中学2025届九上数学开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为( )
A.B.C.D.
2、(4分)下列计算结果正确的是
A.B.C.D.
3、(4分)如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4B.3C.2D.
4、(4分)下列计算过程中,结果是2的是
A.B.C.D.
5、(4分)以下列各组数为边长,能构成直角三角形的是( )
A.2,3,4B.3,4,6C.6,8,11D.7,24,25
6、(4分)如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的角平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为( )
A.30°B.40°C.50°D.45°
7、(4分)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为( )cm2
A.4B.16C.12D.8
8、(4分)下列函数中,y随x的增大而减小的有( )
①y=﹣2x+1;②y=6﹣x;③y=-;④y=(1﹣)x.
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.
10、(4分)将直线y=2x﹣2向右平移1个单位长度后所得直线的解析式为y=_____.
11、(4分)一组数据5,8,x,10,4的平均数是2x,则这组数据的中位数是___________.
12、(4分)如图,点D,E分别在△ABC的边AB,AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为____.
13、(4分)在▱ABCD中,对角线AC,BD相交于点O.请你添加一个条件,使得四边形ABCD成为菱形,这个条件可以是_____.(写出一种情况即可)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60.
(1)求证:ABAC;
(2)若DC=2,求梯形ABCD的面积.
15、(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:
假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3 ∶3 ∶4 ,通过计算说明谁应当选为优秀学生干部。
16、(8分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.
(1)求的值及的面积;
(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;
(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标.
17、(10分)如图,在▱ABCD中,AB=6,AC=10,BD=16,求△COD的周长.
18、(10分)两摞相同规格的饭碗整齐地叠放在桌面上,如图,请根据图中给出的数据信息,解答问题:
(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式(不要求写出自变量x的取值范围);
(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12n mile,“长峰”号每小时航行16n mile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20n mile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.
20、(4分)已知,则_______.
21、(4分)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限.
22、(4分)如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于______.
23、(4分)已知m+3n的值为2,则﹣m﹣3n的值是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,等边三角形ABC的边长是6,点D、F分别是BC、AC上的动点,且BD=CF,以AD为边作等边三角形ADE,连接BF、EF.
(1)求证:四边形BDEF是平行四边形;
(2)连接DF,当BD的长为何值时,△CDF为直角三角形?
(3)设BD=x,请用含x的式子表示等边三角形ADE的面积.
25、(10分)请用合适的方法解下列一元二次方程:
(1);
(2).
26、(12分)如图,正方形的边长为2, 边在轴上, 的中点与原点重合,过定点与动点的直线记作.
(1)若的解析式为,判断此时点是否在直线上,并说明理由;
(2)当直线与边有公共点时,求的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH= ,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.
【详解】
解:如图,连接AF交BE于点O,过点F作MN⊥AB,
∵AB∥CD,MN⊥AB,
∴MN⊥CD,
∵AB=2=AD,点E是AD中点,
∴AE=1,
∴EB=,
∵S△ABE=×AB×AE=×BE×AO,
∴2×1=AO,
∴AO=,
∵将△ABE沿BE折叠,点A的对应点为F,
∴AO=OH=,AB=BF=2,
∴AF=,
∵AF2-AN2=FN2,BF2-BN2=FN2,
∴AF2-AN2=BF2-BN2,
∴-(2-BN)2=4-BN2,
∴BN=,
∴FN=,
∵MN⊥AB,MN⊥CD,∠DCB=90°,
∴四边形MNBC是矩形,
∴BN=MC=,BC=MN=2,
∴MF=,
∴CF=.
故选:D.
本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.
2、C
【解析】
根据二次根式的运算法则进行分析.
【详解】
A. ,不是同类二次根式,不能合并,本选项错误;
B. ,本选项错误;
C. ,本选项正确;
D. ,本选项错误.
故选C
本题考核知识点:二次根式运算. 解题关键点:理解二次根式运算法则.
3、B
【解析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
【详解】
把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y轴,
∴C(1,k),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC与△ABD的面积之和为,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案为B.
:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
4、C
【解析】
根据负指数幂运算法则、0次幂的运算法则、相反数的意义、绝对值的性质逐项进行判断即可得.
【详解】
解:A、原式,故不符合题意;
B、原式,故不符合题意;
C、原式=2,故符合题意;
D、原式,故不符合题意,
故选C.
本题考查了负指数幂、0次幂、相反数、绝对值等,熟练掌握各运算的运算法则以及相关的性质是解题的关键.
5、D
【解析】
将两短边的平方相加,与最长边的平方进行比较,由此即可得出结论.
【详解】
解:A、∵22+32=13,42=16,13≠16,
∴以2、3、4为边长的三角形不是直角三角形;
B、∵32+42=25,62=36,25≠36,
∴以3、4、6为边长的三角形不是直角三角形;
C、∵62+82=100,112=121,100≠121,
∴以6、8、11为边长的三角形不是直角三角形;
D、∵72+242=625,252=625,625=625,
∴以7、24、24为边长的三角形是直角三角形.
故选:D.
本题考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.
6、B
【解析】
根据线段垂直平分线的意义得FA=FB,由∠BAC=50°,得出∠ABC=∠ACB=65°,由角平分线的性质推知∠BAF=25°,∠FBE=40°,延长AF交BC于点E,AE⊥BC,根据等腰三角形的“三线合一”的性质得出:∠BFE=50°,∠CFE=50°,即可解出∠BCF的度数.
【详解】
延长∠BAC的角平分线AF交BC于点E,
∵AF与AB的垂直平分线DF交于点F,
∴FA=FB,
∵AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°
∴∠BAF=25°,∠FBE=40°,
∴AE⊥BC,
∴∠CFE=∠BFE=50°,
∴∠BCF=∠FBE=40°.
故选:B.
本题主要考查了等腰三角形的性质和线段垂直平分线的性质,熟练掌握性质的内容是解答本题的关键.
7、D
【解析】
根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.
【详解】
根据正方形的轴对称性可得,阴影部分的面积=S正方形,
∵正方形ABCD的边长为4cm,
∴S阴影=×42=8cm2,
故选D.
本题考查了轴对称的性质,正方形的面积,根据图形判断出阴影部分的面积等于正方形的面积的一半是解题的关键.
8、D
【解析】
①中,k=-2
相关试卷
这是一份2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省长沙市中学雅培粹中学2023-2024学年数学九年级第一学期期末检测模拟试题含答案,共8页。
这是一份2023-2024学年湖南省长沙市中学雅培粹学校九上数学期末综合测试试题含答案,共7页。试卷主要包含了一元二次方程的解是,方程的解是,桌面上放有6张卡片等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)