年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省武汉梅苑学校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】

    湖北省武汉梅苑学校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】第1页
    湖北省武汉梅苑学校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】第2页
    湖北省武汉梅苑学校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省武汉梅苑学校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】

    展开

    这是一份湖北省武汉梅苑学校2024-2025学年九年级数学第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知:a=,b=,则a与b的关系是( )
    A.相等B.互为相反数C.互为倒数D.平方相等
    2、(4分)如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
    A.1B.2C.5D.6
    3、(4分)一元二次方程4x2+1=3x的根的情况是( )
    A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根
    4、(4分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )
    A.90°B.60°C.120°D.45°
    5、(4分)若平行四边形的两个内角的度数之比为1:5,则其中较小的内角是( )
    A.B.C.D.
    6、(4分)如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是( )
    A.7B.5C.3D.2
    7、(4分)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
    A.B.C.D.
    8、(4分)如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有( )
    A.①②③④B.②③C.②③④D.②④
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直角三角形一条直角边为6,斜边为10,则三边中点所连三角形的周长是_________面积是___________.
    10、(4分)样本容量为 80,共分为六组,前四个组的频数分别为 12,13,15,16,第五组的频率 是 0.1,那么第六组的频率是_____.
    11、(4分)化简3﹣2=_____.
    12、(4分)已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    13、(4分)当m=________时,函数y=-(m-2)+(m-4)是关于x的一次函数.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程:x2﹣6x+8=1.
    15、(8分)如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.
    16、(8分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品共50件.已知生产一件种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产种产品的件数为(件),生产、两种产品所获总利润为(元)
    (1)试写出与之间的函数关系式:
    (2)求出自变量的取值范围;
    (3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
    17、(10分)如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、QE
    (1)求证:四边形BPEQ是菱形:
    (2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.
    18、(10分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.
    (1)该网店甲、乙两种羽毛球每筒的售价各是多少元?
    (2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
    ①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
    ②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,梯形中,,点分别是的中点. 已知两底之差是6,两腰之和是12,则的周长是____.
    20、(4分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.
    21、(4分)若是的小数部分,则的值是______.
    22、(4分)当______时,分式方程会产生增根.
    23、(4分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某校在一次献爱心捐款活动中,学校团支部为了解本校学生的各类捐款人数的情况,进行了一次统计调查,并绘制成了统计图①和②,请解答下列问题.
    (1)本次共调查了多少名学生.
    (2)补全条形统计图.
    (3)这些学生捐款数的众数为 ,中位数为 .
    (4)求平均每个学生捐款多少元.
    (5)若该校有600名学生,那么共捐款多少元.
    25、(10分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.
    (1)如图一,当点O在RtΔABC内部时.
    ①按题意补全图形;
    ②猜想DE与BC的数量关系,并证明.
    (2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.

    26、(12分)如图,在中,,点M、N分别在BC所在的直线上,且BM=CN,求证:△AMN是等腰三角形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    因为,故选C.
    2、C
    【解析】
    分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
    详解:∵数据1,2,x,5,6的众数为6,
    ∴x=6,
    把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
    则这组数据的中位数为5;
    故选C.
    点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
    3、A
    【解析】
    先求出△的值,再判断出其符号即可.
    【详解】
    解:原方程可化为:4x2﹣3x+1=0,
    ∵△=32﹣4×4×1=-7<0,
    ∴方程没有实数根.
    故选A.
    4、D
    【解析】
    首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.
    【详解】
    解:∵平行四边形中两个内角的度数之比为1:3,
    ∴设平行四边形中两个内角分别为x°,3x°,
    ∴x+3x=180,
    解得:x=45,
    ∴其中较小的内角是45°.
    故选D.
    本题考查了平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.
    5、A
    【解析】
    根据平行四边形的性质即可求解.
    【详解】
    设较小的角为x,则另一个角为5x,
    ∵平行四边形的对角互补,
    ∴x+5x=180°,
    解得x=30° ,
    故选A
    此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对角互补.
    6、B
    【解析】
    首先由AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,判断出Rt△AEC≌Rt△CDB,又由AE=7,BD=2,得出CE=BD=2,AE=CD=7,进而得出DE=CD-CE=7-2=5.
    【详解】
    解:∵AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,
    ∴Rt△AEC≌Rt△CDB
    又∵AE=7,BD=2,
    ∴CE=BD=2,AE=CD=7,
    DE=CD-CE=7-2=5.
    此题主要考查直角三角形的全等判定,熟练运用即可得解.
    7、C
    【解析】
    根据函数的性质判断系数k>1,然后依次把每个点的坐标代入函数解析式,求出k的值,由此得到结论.
    【详解】
    ∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>1.
    A.把点(﹣5,3)代入y=kx﹣1得到:k1,不符合题意;
    B.把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<1,不符合题意;
    C.把点(2,2)代入y=kx﹣1得到:k1,符合题意;
    D.把点(5,﹣1)代入y=kx﹣1得到:k=1,不符合题意.
    故选C.
    本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>1是解题的关键.
    8、C
    【解析】
    利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.
    【详解】
    解:∵△ADC绕A顺时针旋转90°后得到△AFB,
    ∴△AFB≌△ADC,
    ∴∠BAF=∠CAD,BF=CD,故②④正确;
    由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE 故③正确;
    无法判断BE=CD,故①错误.
    故选:C.
    本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、12 6
    【解析】
    先依据题意作出简单的图形,进而结合图形,运用勾股定理得出AC,由三角形中位线定理计算即可求出结果
    【详解】
    解:如图,∵D,E,F分别是△ABC的三边的中点,AB=10,BC=6,∠C=90°;
    根据勾股定理得:,
    ∵D,E,F分别是△ABC的三边的中点,
    ,,
    ∴∠C=∠BED=∠EDF=90°;
    ∴△DEF的周长 ;
    △DEF的面积
    故答案为:12,6
    本题考查了三角形的中位线定理和勾股定理,掌握三角形的中位线等于第三边的一半是解题的关键.
    10、0.2.
    【解析】
    首先根据频率=频数÷总数,计算从第一组到第四组的频率之和,再进一步根据一组数据中,各组的频率和是1,进行计算.
    【详解】
    解:根据题意得:第一组到第四组的频率之和是,又因为第五组的频率是 0.1,所以第六组的频率是.
    故答案为0.2.
    本题考查的是频率分布直方图,这类题目主要涉及以下三个计算公式:频率=频数÷样本容量,各组的频率之和为1,各组的频数之和=样本容量.
    11、
    【解析】
    直接合并同类二次根式即可.
    【详解】
    原式=(3﹣2)=.
    故答案为.
    本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
    12、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    13、-2
    【解析】
    ∵函数y=-(m-2)+(m-4)是一次函数,
    ∴,
    ∴m=-2.
    故答案为-2
    三、解答题(本大题共5个小题,共48分)
    14、x1=2 x2=2.
    【解析】
    应用因式分解法解答即可.
    【详解】
    解:x2﹣6x+8=1
    (x﹣2)(x﹣2)=1,
    ∴x﹣2=1或x﹣2=1,
    ∴x1=2 x2=2.
    本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.
    15、△BEF是直角三角形,理由见解析
    【解析】
    因为正方形的四条边相等,边长为12,由E为DC的中点,得出DE和EC的长,AF=3DF,得出AF和DF的长,从而在Rt△ABF中、Rt△BCE中和Rt△DEF中,分别由勾股定理求得BF、BE和EF的长,得到BE2+EF2=BF2,再由勾股定理逆定理证得△BEF是直角三角形.
    【详解】
    解:△BEF是直角三角形,理由如下:
    ∵四边形ABCD是正方形,
    ∴∠A=∠C=∠D=20°
    ∵点E是CD的中点,
    ∴DE=CE=CD=1.
    ∵AF=3DF,
    ∴DF=AD=3
    ∴AF=3DF=2.
    在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,
    在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+31=180,
    在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=2+31=45,
    ∵BE2+EF2=180+45=225,BF2=225,
    ∴BE2+EF2=BF2
    ∴△BEF是直角三角形.
    此题主要考查直角三角形的判定,解题的关键是熟知勾股定理的逆定理.
    16、(1)y与x之间的函数关系式是;
    (2)自变量x的取值范围是x = 30,31,1;
    (3)生产A种产品 30件时总利润最大,最大利润是2元,
    【解析】
    (1)由于用这两种原料生产A、B两种产品共50件,设生产A种产品x件,那么生产B种产品(50-x)件.由A产品每件获利700元,B产品每件获利1200元,根据总利润=700×A种产品数量+1200×B种产品数量即可得到y与x之间的函数关系式;
    (2)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入得到不等式组,解不等式组即可得到自变量x的取值范围;
    (3)根据(1)中所求的y与x之间的函数关系式,利用一次函数的增减性和(2)得到的取值范围即可求得最大利润.
    解答:解:(1)设生产A种产品x件,则生产B种产品(50-x)件,
    由题意得:y=700x+1200(50-x)=-500x+60000,
    即y与x之间的函数关系式为y=-500x+60000;
    (2)由题意得,
    解得30≤x≤1.
    ∵x为整数,
    ∴整数x=30,31或1;
    (3)∵y=-500x+60000,-500<0,
    ∴y随x的增大而减小,
    ∵x=30,31或1,
    ∴当x=30时,y有最大值为-500×30+60000=2.
    即生产A种产品30件,B种产品20件时,总利润最大,最大利润是2元.
    “点睛”本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.
    17、(1)详见解析;(2).
    【解析】
    (1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形BPEQ是平行四边形,再根据菱形的判定即可得出结论;
    (2)先证明OF为△BAE的中位线,然后依据三角形的中位线定理得出AE∥OF且OF=AE.求得OB的长,则可得到BE的长,设菱形的边长为x,则AP=8﹣x,在Rt△APB中依据勾股定理可列出关于x的方程,然后依据菱形的面积公式进行计算即可.
    【详解】
    (1)证明:∵PQ垂直平分BE,
    ∴PB=PE,OB=OE,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,∠A=90°,
    ∴∠PEO=∠QBO,
    在△BOQ与△EOP中,,
    ∴△BOQ≌△EOP(ASA),
    ∴PE=QB,
    又∵AD∥BC,
    ∴四边形BPEQ是平行四边形,
    又∵QB=QE,
    ∴四边形BPEQ是菱形;
    (2)解:∵AB=6,F是AB的中点,
    ∴BF=1.
    ∵四边形BPEQ是菱形,
    ∴OB=OE.
    又∵F是AB的中点,
    ∴OF是△BAE的中位线,
    ∴AE∥OF且OF=AE.
    ∴∠BFO=∠A=90°.
    在Rt△FOB中,OB==5,
    ∴BE=2.
    设菱形的边长为x,则AP=8﹣x.
    在Rt△APB中,BP2=AB2+AP2,
    即x2=62+(8﹣x)2,
    解得:x=,
    ∴BQ=,
    ∴菱形BPEQ的面积=BQ×AB=×6=.
    本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、三角形中位线定理、勾股定理等知识,列出关于x的方程是解题的关键.
    18、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
    【解析】
    【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
    (2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
    ②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
    【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
    根据题意可得,解得,
    答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
    (2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
    根据题意可得 ,解得75<m≤78,
    ∵m为整数,
    ∴m的值为76、77、78,
    ∴进货方案有3种,分别为:
    方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
    方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
    方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
    ②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
    ∵5>0,
    ∴W随m的增大而增大,且75<m≤78,
    ∴当m=78时,W最大,W最大值为1390,
    答:当m=78时,所获利润最大,最大利润为1390元.
    【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
    【详解】
    连接AE,并延长交CD于K,
    ∵AB∥CD,
    ∴∠BAE=∠DKE,∠ABD=∠EDK,
    ∵点E、F、G分别是BD、AC、DC的中点.
    ∴BE=DE,
    在△AEB和△KED中,

    ∴△AEB≌△KED(AAS),
    ∴DK=AB,AE=EK,EF为△ACK的中位线,
    ∴EF=CK=(DC-DK)=(DC-AB),
    ∵EG为△BCD的中位线,∴EG=BC,
    又FG为△ACD的中位线,∴FG=AD,
    ∴EG+GF=(AD+BC),
    ∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,
    ∴EG+GF=6,FE=3,
    ∴△EFG的周长是6+3=1.
    故答案为:1.
    此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
    20、2.
    【解析】
    以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.
    【详解】
    以BC为边作等边三角形BCG,连接FG,AG,
    作GH⊥AC交AC的延长线于H,
    ∵△BDE和△BCG是等边三角形,
    ∴DC=EG,
    ∴∠FDC=∠FEG=120°,
    ∵DF=EF,
    ∴△DFC≌△EFG(SAS),
    ∴FC=FG,
    ∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
    ∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
    ∵BC=CG=AB=2,AC=2,
    在Rt△CGH中,∠GCH=30°,CG=2,
    ∴GH=1,CH=,
    ∴AG= ==2,
    ∴AF+CF的最小值是2.
    此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.
    21、1
    【解析】
    根据题意知,而,将代入,即可求解.
    【详解】
    解:∵ 是的小数部分,而我们知道,
    ∴,
    ∴.
    故答案为1.
    本题目是二次根式的变型题,难度不大,正确理解题干并表示出来,是顺利解题的关键.
    22、1
    【解析】
    解分式方程,根据增根的含义:使最简公分母为0的根叫做分式方程的增根,即可求得.
    【详解】
    解:去分母得,解得,
    而此方程的最简公分母为,令故增根为.
    即,解得.
    故答案为1.
    本题考查解分式方程,难度不大,是中考的常考点,熟练掌握增根的含义是顺利解题的关键.
    23、()1.
    【解析】
    首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.
    【详解】
    ∵四边形ABCD为正方形,
    ∴AB=BC=1,∠B=90°,
    ∴AC2=12+12,AC=;
    同理可求:AE=()2,HE=()3…,
    ∴第n个正方形的边长an=()n-1,
    ∴第2016个正方形的边长为()1,
    故答案为()1.
    本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)本次调查的学生总人数为50人;(2)补全条形图见解析;(3)15元、15元;(4)平均每个学生捐款13元;(5)该校有600名学生,那么共捐款7800元.
    【解析】
    (1)由捐款5元的人数及其所占百分比可得总人数;
    (2)总人数乘以对应百分比求得捐10元、20元的人数,据此补全图形可得;
    (3)根据众数和中位数的定义计算可得;
    (4)根据加权平均数的定义求解可得;
    (5)总人数乘以样本中每个学生平均捐款数可得.
    【详解】
    (1)本次调查的学生总人数为8÷16%=50(人);
    (2)10元的人数为50×28%=14(人),20元的人数为50×12%=6(人),
    补全条形图如下:
    (3)捐款的众数为15元,中位数为=15(元),
    故答案为:15元、15元.
    (4)平均每个学生捐款 =13(元);
    (5)600×13=7800,
    答:若该校有600名学生,那么共捐款7800元.
    本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中获取准确的信息.
    25、 (1)①补全图形,如图一,见解析;②猜想DE=BC. 证明见解析;(2) ∠AED=30°或15°.
    【解析】
    (1)①根据要求画出图形即可解决问题.
    ②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.
    (2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.
    【详解】
    (1)①补全图形,如图一,
    ②猜想DE=BC.
    如图,连接OD交BC于点F,连接AF
    在△BDF和△COF中,
    ∴△BDF≌ΔCOF
    ∴DF=OF,BF=CF
    ∴F分别为BC和DO的中点
    ∵∠BAC=90°,F为BC的中点,
    ∴AF=BC.
    ∵OA=AE,F为BC的中点,
    ∴AF=ED.
    ∴DE=BC
    (2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,
    ∵AB=AC,
    ∴AF垂直平分线段BC,
    ∴MB=MC,∵∠OCB=30°,∠OBC=15°,
    ∴∠MBC=∠MCB=30°,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,
    ∵∠BAM=∠BOM=45°,BM=BM,
    ∴△BMA≌△BMO(AAS),
    ∴AM=OM,∠BMO=∠BMA=120°,
    ∴∠AMO=120°,
    ∴∠MAO=∠MOA=30°,
    ∴∠AED=∠MAO=30°.
    如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,
    ∴∠MAO=∠MBO=30°-15°=15°,
    ∵DE∥AM,
    ∴∠AED=∠MAO=15°,
    综上所述,满足条件的∠AED的值为15°或30°.
    本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    26、详见解析
    【解析】
    根据已知条件易证△ABM≌△ACN,由全等三角形的性质可得AM=AN,即可证得△AMN是等腰三角形.
    【详解】
    证明:∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠ABM=∠ACN,
    在△ABM和△ACN中,

    ∴△ABM≌△ACN,
    ∴AM=AN,
    即△AMN是等腰三角形.
    本题考查了全等三角形的判定与性质及等腰三角形的判定,利用全等三角形的的判定证得△ABM≌△CAN是解决问题的关键.
    题号





    总分
    得分

    相关试卷

    湖北武汉市梅苑学校2024-2025学年上学期10月九年级数学月考试题 (无答案):

    这是一份湖北武汉市梅苑学校2024-2025学年上学期10月九年级数学月考试题 (无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉市梅苑中学九上数学开学调研试题【含答案】:

    这是一份2024-2025学年湖北省武汉市梅苑中学九上数学开学调研试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖北省武汉市梅苑中学八上数学期末综合测试模拟试题含答案:

    这是一份2023-2024学年湖北省武汉市梅苑中学八上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列因式分解正确的是,下列说法不正确的是,下列说法正确的是,下列因式分解结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map