河南省郑州一中学2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份河南省郑州一中学2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)的计算结果是( )
A.3B.9C.6D.2
2、(4分)下列表格是二次函数的自变量x与函数值y的对应值,判断方程(为常数)的一个解x的范围是
A.B.
C.D.
3、(4分)下列命题中,正确的是( )
A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点
B.平行四边形是轴对称图形
C.三角形的中位线将三角形分成面积相等的两个部分
D.一组对边平行,一组对角相等的四边形是平行四边形
4、(4分)如图,函数y=与y=﹣kx+1(k≠0)在同一直角坐标系中的图象大致为( )
A.B.
C.D.
5、(4分)化简:的结果是( )
A.B.C.﹣D.﹣
6、(4分)用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
7、(4分)若,则= ( )
A.B.C.D.无法确定
8、(4分)如图,在ABCD中,∠A=130°,则∠C-∠B的度数为( )
A.90°B.80°C.70°D.60°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个矩形在直角坐标平面上的三个顶点的坐标分别是(﹣2,﹣1)、(3,﹣1)、(﹣2,3),那么第四个顶点的坐标是_____.
10、(4分)如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .
11、(4分)甲、乙两个样本,甲的方差为0.102,乙的方差为0.06,哪个样本的数据波动大?答:________.
12、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.
13、(4分)在一频数分布直方图中共有9个小长方形,已知中间一个长方形的高等于其它8个小长方形的高的和的,且这组数据的总个数为120,则中间一组的频数为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)直线与抛物线交于、两点,其中在轴上,是抛物线的顶点.
(1)求与的函数解析式;
(2)求函数值时的取值范围.
15、(8分)如图,△ABC 的面积为 63,D 是 BC 上的一点,且 BD:BC=2:3, DE∥AC 交 AB 于点 E,延长 DE 到 F,使 FE:ED=2:1.连结 CF 交 AB 点于 G.
(1)求△BDE 的面积;
(2)求 的值;
(3)求△ACG 的面积.
16、(8分)2019年是我们伟大祖国建国70周年,各种欢庆用品在网上热销.某网店销售甲、乙两种纪念商品,甲种商品每件进价150元,可获利润40元;乙种商品每件进价100元,可获利润30元.由于这两种商品特别畅销,网店老板计划再购进两种商品共100件,其中乙种商品不超过36件.
(1)若购进这100件商品的费用不得超过13700元,求共有几种进货方案?
(2)在(1)的条件下,该网店在7•1建党节当天对甲种商品以每件优惠m(0<m<20)元的价格进行优惠促销活动,乙种商品价格不变,那么该网店应如何调整进货方案才能获得最大利润?
17、(10分)如图,平面直角坐标系中,已知点,若对于平面内一点C,当是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.
请判断点,点是否是线段AB的“等长点”,并说明理由;
若点是线段AB的“等长点”,且,求m和n的值.
18、(10分)如图,在平面直角坐标系中,为坐标原点,的三个顶点坐标分别为,,,与关于原点对称.
(1)写出点、、的坐标,并在右图中画出;
(2)求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.
20、(4分)数据2,4,3,x,7,8,10的众数为3,则中位数是_____.
21、(4分)不等式组的解集是_____.
22、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE=CF,且S四边形ABFD=20,则k= _________.
23、(4分)点P(m-1,2m+3)关于y轴对称的点在第一象限,则m的取值范围是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读理解
在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.
解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.
解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.
方法迁移:请解答下面的问题:
在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.
25、(10分)已知,,求.
26、(12分)如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.
(1)在图甲中画出一个▱ABCD.
(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
求出的结果,即可选出答案.
【详解】
解:=3,
故选:A.
本题考查了二次根式的性质的应用,注意:.
2、C
【解析】
利用二次函数和一元二次方程的性质.
由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围.
故选C.
3、D
【解析】
由三角形的内心和外心性质得出选项A不正确;由平行四边形的性质得出选项B不正确;由三角形中位线定理得出选项C不正确;由平行四边形的判定得出选项D正确;即可得出结论.
【详解】
解:A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点;不正确;
B.平行四边形是轴对称图形;不正确;
C.三角形的中位线将三角形分成面积相等的两个部分;不正确;
D.一组对边平行,一组对角相等的四边形是平行四边形;正确;
故选:D.
本题考查了命题与定理、三角形的内心与外心、平行四边形的判定与性质以及三角形中位线定理;对各个命题进行正确判断是解题的关键.
4、B
【解析】
比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.
【详解】
解:k>0时,一次函数y=﹣kx+1的图象经过第一、二、四象限,反比例函数的两个分支分别位于第一、三象限,选项B符合;
k<0时,一次函数y=﹣kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限,无选项符合.
故选:B.
考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
5、D
【解析】
根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.
【详解】
解:原式
故选:.
本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.
6、B
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
故选B.
考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
7、B
【解析】
设比值为,然后用表示出、、,再代入算式进行计算即可求解.
【详解】
设,
则,,,
.
故选:.
本题考查了比例的性质,利用设“”法表示出、、是解题的关键,设“”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.
8、B
【解析】
根据平行四边形的性质求出∠B和∠C的度数,即可得到结论.
【详解】
解:∵四边形ABCD是平行四边形,AD∥BC,则∠B=180°-∠A=180°-130°=50°.
又∵∠C=∠A=130°,∴故∠C-∠B=130°-50°=80°.
故选B.
本题考查了平行四边形的性质.熟练掌握平行四边形的性质是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(3,3)
【解析】
因为(-2,-1)、(-2,3)两点横坐标相等,长方形有一边平行于y轴,(-2,-1)、(3,-1)两点纵坐标相等,长方形有一边平行于x轴,即可求出第四个顶点的坐标.
【详解】
解:过(﹣2,3)、(3,﹣1)两点分别作x轴、y轴的平行线,
交点为(3,3),即为第四个顶点坐标.
故答案为:(3,3).
此题考查坐标与图形性质,解题关键在于画出图形
10、1
【解析】
试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=BC=1.
考点:三角形中位线定理.
11、甲的波动比乙的波动大.
【解析】
根据方差的定义,方差越小数据越稳定,故可得到正确答案.
【详解】
解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.
故答案:甲的波动比乙的波动大.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
12、32
【解析】
根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.
【详解】
∵数据方差的计算公式是,
∴样本容量为8,平均数为4,
∴该组数据的总和为8×4=32,
故答案为:32
本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.
13、15
【解析】
根据题意可知中间一组的频数占总的频数的,从而可以解答本题.
【详解】
∵频数分布直方图中共有9个小长方形,
且中间一个长方形的高等于其它8个小长方形的高的和的,
∴中间一组数据的频数占总频数的,而总频数为120,
∴中间一组的频数为:,
故答案为:15.
本题考查频数分布直方图,解答本题的关键是明确频数分布直方图表示的含义.
三、解答题(本大题共5个小题,共48分)
14、(1),;(2)
【解析】
(1)将代入求得m,确定一个解析式;由P点在x轴上,即纵坐标为0,确定P的坐标,再结合顶点式,即可确定第二个解析式;
(2)由(1)得到得解析式,然后列出不等式,解不等式即可.
【详解】
(1)把代入,
∴,
∴,
∴,
∴令,,
∴,
∴,
∵抛物线的顶点为,
∴设抛物线.
代入得,
∴,
即.
(2)由题意得:x+1<
解得:.
本题主要考查了待定系数法确定解析式和解不等式,其中解不等式是解答本题的关键.
15、(1)△BDE的面积是28;(2);(3)9
【解析】
(1)因为DE∥AC,所以△BDE∽△BCA,由相似三角形的性质:面积比等于相似比的平方可得到△BDE的面积;
(2)若要求 的值,可由相似三角形的性质分别得到AC和DE的数量关系、EF和DE的数量关系即可;
(3)由(1)可知△BDE的面积是28,因为BD:BC=2:3,所以BD:CD=2:1,又因为三角形BDE和三角形CDE中BD和CD边上的高相等,所以S =14,进而求出四边形ACDE的面积是35和S =21,利用相似三角
【详解】
(1)∵DE∥AC,
∴△BDE∽△BCA,
∴ ,
∵BD:BC=2:3,
∴ ,
∵△ABC的面积为63,
∴△BDE的面积是28;
(2)∵DE∥AC,
∴ ,
∴AC= ED,
∵FE:ED=2:1,
∴EF=2ED,
∴ ;
(3)∵△BDE的面积是28,
∴S =14,
∴四边形ACDE的面积是35,
∴S =21,
∵DE∥AC,
∴△GEF∽△GAC,
∴ ,
∴S = ×21=9.
此题考查相似三角形的判定与性质,三角形的面积,解题关键在于得到△BDE∽△BCA
16、(1)11(2)当时,甲服装74件,乙服装26件;当m=10时,哪一种都可以;当时,甲服装64件,乙服装36件.
【解析】
(1)设甲种纪念商品购进x件,则乙种纪念商品购进(100-x)件,然后根据购进这100件服装的费用不得超过13700元,列出不等式解答即可;
(2)首先求出总利润W的表达式,然后针对m的不同取值范围进行讨论,分别确定其进货方案.
【详解】
(1)设购进甲商品x件,则乙商品购进(100-x),则
,解得:64≤x≤74,
所以,有11种进货方案.
(2)设总利润为W元,则有,
即.
当,,W随x增大而增大,
∴当x=74时,W有最大值,即此时购进甲种服装74件,乙种服装26件;
当m=10时,按哪一种方案进货都可以;
当时,,W随x增大而减小,
∴x=64时,W有最大值,即此时购进甲种服装64件,乙种服装36件.
本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x表示出利润是关键.
17、是线段AB的“等长点”,不是线段AB的“等长点”,理由见解析;,或,.
【解析】
先求出AB的长与B点坐标,再根据线段AB的“等长点”的定义判断即可;
分两种情况讨论,利用对称性和垂直的性质即可求出m,n.
【详解】
点,,
,,,
.
点,
,
,
是线段AB的“等长点”,
点,
,,
,,
不是线段AB的“等长点”;
如图,
在中,,,
,
.
分两种情况:
当点D在y轴左侧时,
,
,
点是线段AB的“等长点”,
,
,
,;
当点D在y轴右侧时,
,
,
,
点是线段AB的“等长点”,
,
.
综上所述,,或,.
本题考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,坐标与图形性质解的关键是理解新定义,解的关键是画出图形,是一道中等难度的中考常考题.
18、(1)、、,作图见解析;(2)6
【解析】
(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用三角形面积公式计算.
【详解】
解:(1)如图,△A1B1C1为所作,
∴、、;
(2);
本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据直角三角形的性质直接求解.
【详解】
解:直角三角形斜边长为6,
这个直角三角形斜边上的中线长为1.
故答案为:1.
本题考查了直角三角形的性质,解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.
20、1
【解析】
先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:∵这组数据2,1,3,x,7,8,10的众数为3,
∴x=3,
从小到大排列此数据为:2,3,3,1,7,7,10,
处于中间位置的数是1,
∴这组数据的中位数是1;
故答案为:1.
本题主要考查数据统计中的众数和中位数的计算,关键在于根据题意求出未知数.
21、x≤1
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
解不等式①得:x≤1,
解不等式②得:x<7,
∴不等式组的解集是x≤1,
故答案为:x≤1.
本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.
22、
【解析】
由题意可设E点坐标为(,4),则有AE=,根据AE=CF,可得CF=,再根据四边形ABCD是菱形,BC=k,可得CD=6CF,再根据S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,从而可得S菱形ABCD=24,根据S菱形ABCD=BC•AO,即可求得k的值.
【详解】
由题意可设E点坐标为(,4),则有AE=,
∵AE=CF,∴CF=,
∵四边形ABCD是菱形,BC=k,
∴CD=BC=k,
∴CD=6CF,
∴S菱形ABCD=12S△BCF,
∵S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,
∴S菱形ABCD= ,
∵S菱形ABCD=BC•AO,
∴4k=,
∴k=,
故答案为.
本题考查了菱形的性质、菱形的面积,由已知推得S菱形ABCD=6S△BCF是解题的关键.
23、-1.5<m<1
【解析】
首先根据题意判断出P点在第二象限,再根据第二象限内点的坐标符号(-,+),可得到不等式组,然后求解不等式组即可得出m的取值范围.
【详解】
解:∵P(m-1,2m+3)关于y轴对称的点在第一象限,
∴P点在第二象限,
解得:-1.5<m<1,
故答案为:-1.5<m<1.
本题考查关于y轴对称的点的坐标特点,各象限内点的坐标符号,解一元一次不等式组.解答本题的关键是判断出P点所在象限并据此列出不等式组.
二、解答题(本大题共3个小题,共30分)
24、S△ABC=.
【解析】
方法迁移:根据题意画出图形,△ABC的面积等于矩形EFCH的面积減去三个小直角三角形的面积;思维拓展:根据题意画出图形,△ABC的面积等于大矩形的面积减去三个小直角三角形的面积
【详解】
建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图所示,
借用网格面积可得S△ABC=S矩形EFCH﹣S△ABE﹣S△AFC﹣S△CBH=9﹣ ×2×1﹣×3×1﹣×2×3=
此题考查勾股定理,解题关键在于利用勾股定理算出各个边长
25、
【解析】
由x+y=−5,xy=3,得出x<0,y<0,利用二次根式的性质化简,整体代入求得答案即可.
【详解】
∵x+y=−5,xy=3,
∴x<0,y<0,
∴===.
此题考查二次根式的化简求值,掌握二次根式的性质,渗透整体代入的思想是解决问题的关键.
26、(1)答案见解析;(2)答案见解析
【解析】
试题分析:(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;
(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.
试题解析:(1)如图①:
.
(2)如图②,
.
考点:平行四边形的性质
题号
一
二
三
四
五
总分
得分
x
…
6.17
6.18
6.19
6.20
…
…
-0.03
-0.01
0.02
0.04
…
相关试卷
这是一份河南省郑州市第八中学2025届数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省济源市2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,四象限,则的值是,解答题等内容,欢迎下载使用。
这是一份成都十八中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。