河北省衡水市名校2025届九年级数学第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)正方形有而矩形不一定有的性质是( )
A.四个角都是直角B.对角线相等
C.对角线互相平分D.对角线互相垂直
2、(4分)若函数有意义,则
A. B. C. D.
3、(4分)把分式中的x和y都扩大为原来的5倍,那么这个分式的值( )
A.扩大为原来的5倍B.不变
C.缩小到原来的D.扩大为原来的倍
4、(4分)如图,△ABC中,D,E分别是AB,AC的中点,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为( )
A.2.5B.2C.1.5D.1
5、(4分)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )
A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间
6、(4分)当时,函数的值是( )
A.-3B.-5C.-7D.-9
7、(4分)如图,在中,,,,则( )
A.3B.C.D.6
8、(4分)如图,在中,,,分别为,,边的中点,于,,则等于( )
A.32B.16C.8D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
10、(4分)一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.
11、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则 .(填”>”,”<”或”=”)
12、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______
13、(4分)若一个多边形的内角和是900º,则这个多边形是 边形.
三、解答题(本大题共5个小题,共48分)
14、(12分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.
15、(8分)如图,在四边形ABCD中,AD∥BC,∠ADC=90°,BC=8,DC=6,AD=10,动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动,设运动的时间为t(秒)。
(1)当点P运动t秒后,AP=____________(用含t的代数式表示);
(2)若四边形ABQP为平行四边形,求运动时间t;
(3)当t为何值时,△BPQ是以BQ或BP为底边的等腰三角形;
16、(8分)解下列方程:
(1)x2﹣3x=1.
(2)(x﹣3)(x﹣1)=2.
17、(10分)已知:如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为点E,点F.求证:BE=DF
18、(10分)如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求证:BD⊥CB;
(2)求四边形 ABCD 的面积;
(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简的结果为________.
20、(4分)如图,在矩形ABCD中,,,将矩形沿AC折叠,则重叠部分的面积为______.
21、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
22、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
23、(4分)数据2,0,1,9,0,6,1,6的中位数是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.
(1)求笔试成绩和面试成绩各占的百分比:
(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。
25、(10分)如图,已知在△ABC中,D为BC的中点,连接AD,E为AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:四边形ADCF为平行四边形.
(2)当四边形ADCF为矩形时,AB与AC应满足怎样的数量关系?请说明理由.
26、(12分)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据正方形与矩形的性质对各选项分析判断后利用排除法求解.
【详解】
解:A、正方形和矩形的四个角都是直角,故本选项错误;
B、正方形和矩形的对角线相等,故本选项错误;
C、正方形和矩形的对角线互相平分,故本选项错误;
D、正方形的对角线互相垂直平分,矩形的对角线互相平分但不一定垂直,故本选项正确.
故选D.
本题考查了正方形和矩形的性质,熟记性质并正确区分是解题的关键.
2、D
【解析】
解:由题意得:x﹣1≠0,解得x≠1.故选D.
3、B
【解析】
先将x和y都扩大为原来的5倍,然后再化简,可得答案.
【详解】
解:分式中的x和y都扩大为原来的5倍,得,
所以这个分式的值不变,
故选:B.
此题考查了分式的基本性质,关键是熟悉分式的运算法则.
4、C
【解析】
利用三角形中位线定理得到DE= BC.由直角三角形斜边上的中线等于斜边的一半得到DF=AB.所以由图中线段间的和差关系来求线段EF的长度即可.
【详解】
解:∵DE是△ABC的中位线,
∴DE=BC=1.
∵∠AFB=90°,D是AB的中点,
∴DF=AB=2.2,
∴EF=DE-DF=1-2.2=1.2.
故选:C.
本题考查了三角形的中位线定理的应用,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半,题目比较好,难度适中.
5、A
【解析】
由P点坐标利用勾股定理求出OP的长,再根据已知判定A点的位置求解即可.
【详解】
因为点坐标为,所以,故.因为,,,即,点在x轴的负半轴,所以点的横坐标介于﹣4和﹣3之间.
故选A.
本题主要考查平面直角坐标系的有关概念和圆的基本概念.
6、C
【解析】
将代入函数解析式即可求出.
【详解】
解:当时,函数,
故选C.
本题考查函数值的意义,将x的值代入函数关系式按照关系式提供的运算计算出y的值即为函数值.
7、A
【解析】
根据直角三角形的性质:30度的锐角所对的直角边等于斜边的一半即可求解.
【详解】
解:∵在△ABC中,∠C=90°,∠A=30°,
∴BC= AB= ×6=3,
故选:A.
本题考查了含30度的直角三角形的性质,正确掌握定理是解题的关键.
8、B
【解析】
利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.
【详解】
解:∵D、F分别是AB、BC的中点,
∴DF是△ABC的中位线,
∴DF=AC(三角形中位线定理);
又∵E是线段AC的中点,AH⊥BC,
∴EH=AC,
∴EH=DF=1.
故选B.
本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或
【解析】
【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
【详解】M{3,2x+1,4x-1}==2x+1,
∵M{3,2x+1,4x-1}=min{2,-x+3,5x},
∴有如下三种情况:
①2x+1=2,x=,此时min{2,-x+3,5x}= min{2,,}=2,成立;
②2x+1=-x+3,x=,此时min{2,-x+3,5x}= min{2,,}=2,不成立;
③2x+1=5x,x=,此时min{2,-x+3,5x}= min{2,,}=,成立,
∴x=或,
故答案为或.
【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.
10、1.1,2,2.1.
【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.
详解:1,3,1,1,2,a的众数是a,
∴a=1或2或3或1,
将数据从小到大排列分别为:1,1,1,2,3,1,
1,1,2,2,3,1,
1,1,2,3,3,1,
1,1,2,3,1,1.
故中位数分别为:1.1,2,2.1.
故答案为:1.1,2,2.1.
点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.
11、.
【解析】
试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.
由题意得,函数的,故y的值随x的值增大而增大.
∵,∴.
考点:一次函数图象与系数的关系.
12、金额与数量
【解析】
根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故答案为:金额与数量.
本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.
13、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、且.
【解析】
先根据分式方程的解法求解方程,再根据分式方程解的情况分类讨论求m的取值,
再解不等式组,根据不等式组的解集和分式方程解的关系即可求解.
【详解】
方程两边同乘,得,,解得,
当时,,,
当时,,,
故当或时有,
方程的解为,其中且,
解不等式组得解集,
由题意得且,解得且,
的取值范围是且.
本题主要考查解含参数的分式方程和解不等式组,解决本题的关键是要熟练掌握解含参数的分式方程.
15、(1)10-2t;(2)t=2(3)t=或t=.
【解析】
(1)根据AP=AD-DP即可写出;
(2)当四边形ABQP为平行四边形时,AP=BQ,即可列方程进行求解;
(3)分两种情况讨论:①若PQ=BQ,在Rt△PQE中,由PQ2=PE2+EQ2,PQ=BQ,将各数据代入即可求解;②若PB=PQ,则BQ=2EQ,列方程即可求解.
【详解】
(1)∵动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,
∴AP=AD-DP=10-2t,
故填:10-2t;
(2)∵四边形ABQP为平行四边形时,∴AP=BQ,
∵BQ=BC-CQ=8-t,
∴10-2t=8-t,解得t=2,
(3)如图,过点P作PE⊥BC于E,
①当∠BQP为顶角时,PQ=BQ,BQ=8-t,PE=CD=6,EQ=CE-CQ=2t-t=t,
在Rt△PQM中,由PQ2=PE2+EQ2,又PQ=BQ,
∴(8-t)2=62+t2,
解得t=
②当∠BPQ为顶角时,则BP=PQ
由BQ=2EQ,即8-t=2t
解得t=
故 t=或t=时,符合题意.
此题主要考查四边形的动点问题,解题的关键是熟知等腰三角形的性质及勾股定理列出方程进行求解.
16、(1)x1=1,x2=3;(2)x1=5,x2=﹣1
【解析】
(1)提取公因式,用分解因式法解方程,分别令每个因式等于1,求出两根即可;
(2)左边用多项式乘以多项式的运算法则展开,移项,使右边等于零,合并同类项,整理成一元二次方程的标准形式,再用分解因式法解方程即可.
【详解】
(1)解:x2﹣3x=1,
x(x﹣3)=1,
x=1,x﹣3=1,
x1=1,x2=3
(2)解:(x﹣3)(x﹣1)=2,
整理得:x2﹣4x﹣5=1,
(x﹣5)(x+1)=1,
x﹣5=1,x+1=1,
x1=5,x2=﹣1
本题考查利用因式分解解一元二次方程,解题关键在于掌握因式分解.
17、证明见解析.
【解析】
根据平行四边形的性质可得AB=CD,∠B=∠D,然后利用AAS定理证明△ABE≌△CFD可得BE=DF.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,
∵AE⊥BC,CF⊥AD,
∴∠AEB=∠CFD=90°,
在△ABE和△CDF中
∴△ABE≌△CFD(AAS),
∴BE=DF
此题主要考查了平行四边形的性质,三角形的判定与性质,证明△ABE≌△CFD是解答本题的关键.平行四边形的性质:平行四边形对应边相等,对应角相等,对角线互相平分.
18、(1)证明见解析;(1)36m1;(3)P 的坐标为(0,-1)或(0,10).
【解析】
(1)先根据勾股定理求出 BD 的长度,然后根据勾股定理的逆定理,即可证明
BD⊥BC;
(1)根据四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积,代入数据计算即可求解;
(3)先根据 S△PBD=S四边形 ABCD,求出 PD,再根据 D 点的坐标即可求解.
【详解】
(1)证明:连接 BD.
∵AD=4m,AB=3m,∠BAD=90°,
∴BD=5m.
又∵BC=11m,CD=13m,
∴BD1+BC1=CD1.
∴BD⊥CB;
(1)四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积
= ×3×4+ ×11×5
=6+30
=36(m1).
故这块土地的面积是 36m1;
(3)∵S△PBD=S 四边形ABCD
∴•PD•AB= ×36,
∴•PD×3=9,
∴PD=6,
∵D(0,4),点 P 在 y 轴上,
∴P 的坐标为(0,-1)或(0,10).
本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先把分子、分母分解因式,然后约分即可.
【详解】
解:==
本题主要考查了分式的化简,正确进行因式分解是解题的关键.
20、1
【解析】
首先证明AE=CE,根据勾股定理列出关于线段AE的方程,解方程求出AE的长问题即可解决.
【详解】
解:由题意得:∠DCA=∠ACE,
∵四边形ABCD为矩形,
∴DC//AB,∠B=90°,
∴∠DCA=∠CAE,
∴∠CAE=∠ACE,
∴AE=CE(设为x),
则BE=8-x,
由勾股定理得:x2=(8-x) 2+42,
解得:x=5,
∴S△AEC =×5×4=1,
故答案为1.
本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.
21、175°
【解析】
如图所示,∵∠ADC、∠BCD的平分线交于点O1,
∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
∵∠O1DC、∠O1CD的平分线交于点O2,
∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
又∵四边形ABCD中,∠DAB+∠ABC=200°,
∴∠ADC+∠DCB=160°,
∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
故答案为175°.
22、1
【解析】
根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
【详解】
解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
故答案为1.
本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
23、1.2
【解析】
根据中位数的意义,将这组数据从小到大排序后,处在第4、2位置的两个数的平均数是中位数,即可解答.
【详解】
解:将这组数据从小到大排序后,处在第4、2位的两个数的平均数为(1+2)÷2=1.2,
因此中位数是1.2.
故答案为:1.2.
此题考查中位数的意义,把一组数据从小到大排列后找出处在中间位置的一个数或两个数的平均数是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)笔试占,面试占;(2)第一名:2号,第二名:1号,第三名:3号.
【解析】
(1)设笔试成绩占百分比为,则面试成绩占比为,根据题意列出方程,求解即可;
(2)根据笔试成绩和面试成绩各占的百分比,分别求出其余两名选手的综合成绩,即可得出答案.
【详解】
解:(1)设笔试成绩占百分比为,则面试成绩占比为.
由题意,得
∴笔试成绩占,面试成绩占.
(2)2号选手的综合成绩:
3号选手的综合成绩:
∴三位选手按综合成绩排名为:第一名:2号,第二名:1号,第三名:3号.
本题考查了加权平均数和一元一次方程的应用,熟知加权平均数的计算公式是解题的关键.
25、(1)详见解析;(2)四边形ADCF为矩形时AB=AC,理由详见解析.
【解析】
(1)利用△AEF≌△DEB得到AF=DB,所以AF=DC,根据一组对边平行且相等的四边形是平行四边形可证明四边形ADCF为平行四边形;
(2)利用等腰三角形的性质以及矩形的性质得出即可.
【详解】
(1)∵AF∥BC,
∴∠FAE=∠EDB,∠AFE=∠EBD.
又∵AE=ED,
∴△AEF≌△DEB(AAS),
∴AF=DB,
又∵BD=DC,
∴AF=DC,
∴四边形ADCF为平行四边形;
(2)四边形ADCF为矩形时AB=AC;
理由:∵四边形ADCF为矩形,
∴AD⊥BC,
∴∠ADC=90°,
∵D为BC的中点,
∴AB=AC,
∴四边形ADCF为矩形时AB=AC.
此题主要考查了矩形的性质和全等三角形的判定等知识,利用了全等三角形的判定与性质,平行四边形的判定,矩形的性质是解题关键.
26、y=﹣x或y=﹣x.
【解析】
根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).
【详解】
解:直线l的解析式为:y=kx,
对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,
∴A(﹣4,0)、B(0,4),
∴OA=4,OB=4,
∴S△AOB=×4×4=8,
当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC=,
作CF⊥OA于F,CE⊥OB于E,
∴×AO•CF=,即×4×CF=,
∴CF=.
当y=时,x=﹣,
则=﹣k,
解得,k=﹣,
∴直线l的解析式为y=﹣x;
当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF=,
解得直线l的解析式为y=﹣x.
故答案为y=﹣x或y=﹣x.
本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.
题号
一
二
三
四
五
总分
得分
序号
笔试成绩/分
面试成绩/分
河北省衡水市武邑中学2025届数学九年级第一学期开学经典模拟试题【含答案】: 这是一份河北省衡水市武邑中学2025届数学九年级第一学期开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】: 这是一份河北省衡水市景县2024-2025学年数学九年级第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河北省承德市名校数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2025届河北省承德市名校数学九年级第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。