贵州省毕节织金县联考2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份贵州省毕节织金县联考2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC 中, AB 的垂直平分线交 BC 于 D,AC 的中垂线交 BC 于 E,∠BAC=112°,则∠DAE 的度数为( )
A.68°B.56°C.44°D.24°
2、(4分)在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为( )
A.正五边形 B.正六边形 C.等腰梯形 D.平行四边形
3、(4分)计算的结果是
A.﹣3B.3C.﹣9D.9
4、(4分)下列条件中,不能判定四边形是平行四边形的是( )
A.,B.,
C.,D.,
5、(4分)对某小区20户家庭某月的节约用水情况进行分组统计,结果如下表:
由上表可知,这20户家庭该月节约用水量的平均数是( )
A.1.8tB.2.3tC.2.5tD.3 t
6、(4分)下列各式从左到右的变形中,是因式分解的是( )
A.B.
C.D.
7、(4分)已知y是x的一次函数,下表中列出了部分对应值:
则m等于( )
A.-1B.0C.D.2
8、(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为( )
A.10B.C.15D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一组数据1,2,3,x,0,3,2的众数是3,则这组数据的中位数是_____.
10、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.
11、(4分)已知反比例函数的图象经过第一、三象限,则常数的取值范围是_____.
12、(4分)我们把“宽与长的比等于黄金比的矩形称为黄金矩形”,矩形是黄金矩形,且,则__________.
13、(4分)计算:3-2= ;
三、解答题(本大题共5个小题,共48分)
14、(12分)小明遇到这样一个问题:
如图,点是中点,,求证:.
小明通过探究发现,如图,过点作.交的延长线于点,
再证明,使问题得到解决。
(1)根据阅读材料回答:的条件是______(填“”“”“”“”或“”)
(2)写出小明的证明过程;
参考小明思考问题的方法,解答下列问题:
(3)已知,中,是边上一点,,,分别在,上,连接.点是线段上点,连接并延长交于点,.如图,当时,探究的值,并说明理由:
15、(8分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=(a为常数),如图所示. 根据图中提供的信息,解答下列问题:
(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?
16、(8分)如图(1),为等腰三角形,,点是底边上的一个动点,,.
(1)用表示四边形的周长为 ;
(2)点运动到什么位置时,四边形是菱形,请说明理由;
(3)如果不是等腰三角形图(2),其他条件不变,点运动到什么位置时,四边形是菱形(不必说明理由).
17、(10分)计算:(﹣1)2018+﹣×+(2+)(2﹣)
18、(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,探究:当△OPA的面积为27时,求点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当a__________时,分式有意义.
20、(4分)利用因式分解计算:2012-1992=_________;
21、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
22、(4分)在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.
23、(4分)甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:
某同学根据上表分析得出如下结论:(l)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀(每分钟输入汉字超过150个为优秀)的人数多于甲班优秀的人数;(3)甲班的成绩波动比乙班的成绩波动小、上述结论中正确的是______.(填序号)
二、解答题(本大题共3个小题,共30分)
24、(8分)某校需要招聘一名教师,对三名应聘者进行了三项素质测试下面是三名应聘者的综合测试成绩:
(1)如果根据三项测试的平均成绩确定录用教师,那么谁将被录用?
(2)学校根据需要,对基本素质、专业知识、教学能力的要求不同,决定按2:1:3的比例确定其重要性,那么哪一位会被录用?
25、(10分)端午节放假期间,某学校计划租用辆客车送名师生参加研学活动,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车辆,租车总费用为元.
(1)求出(元)与(辆)之间函数关系式;
(2)求出自变量的取值范围;
(3)选择怎样的租车方案所需的费用最低?最低费用多少元?
26、(12分)如图1.在边长为10的正方形中,点在边上移动(点不与点,重合),的垂直平分线分别交,于点,,将正方形沿所在直线折叠,则点的对应点为点,点落在点处,与交于点,
(1)若,求的长;
(2)随着点在边上位置的变化,的度数是否发生变化?若变化,请说明理由;若不变,请求出的度数;
(3)随着点在边上位置的变化,点在边上位置也发生变化,若点恰好为的中点(如图2),求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据三角形内角和定理求出∠B+∠C,根据线段垂直平分线的性质得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,结合图形计算,得到答案.
【详解】
解:∠B+∠C=180°-∠BAC=68°,
∵AB的垂直平分线交BC于D,
∴DA=DB,
∴∠DAB=∠B,
∵AC的中垂线交BC于E,
∴EA=EC,
∴∠EAC=∠C,
∴∠DAE=∠BAC-(∠DAB+∠EAC)=112°-68°=44°,
故选:C.
本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
2、D
【解析】A.正五边形是轴对称图形,但不是中心对称图形,故A错;
B.正六边形既是轴对称图形,又是中心对称图形,故B错;
C. 等腰梯形是轴对称图形,但不是中心对称图形,故C错;
D. 平行四边形是中心对称图形,但不是轴对称图形,故D正确;
故选D.
3、B
【解析】
利用二次根式的性质进行化简即可.
【详解】
=|﹣3|=3.
故选B.
4、A
【解析】
根据平行四边形的判定方法逐个判断即可解决问题.
【详解】
解:A、若AB=CD,∠A=∠B,不可以判定四边形ABCD是平行四边形;
B、∵AB∥CD,
∴∠B+∠C=180°,
∵∠A=∠C,
∴∠A+∠B=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,故B可以判定四边形ABCD是平行四边形;
C、根据一组对边平行且相等的四边形是平行四边形,可知C可以判定四边形ABCD是平行四边形;
D、根据两组对边分别平行的四边形是平行四边形,可知D可以判定四边形ABCD是平行四边形;
故选:A.
本题考查平行四边形的判定,解题的关键是记住平行四边形的判定方法:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.
5、B
【解析】
根据每组的组中值利用加权平均数的定义列式计算即可得.
【详解】
解:由上表可知,这20户家庭该月节约用水量的平均数是
=2.3(t),
故选B.
本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键.
6、D
【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
【详解】
解:A、不是因式分解,故A错误;
B、是整式乘法,故B错误;
C、,故C错误;
D、,故D正确;
故选:D.
本题考查了因式分解的意义,关键是熟练掌握定义,区别开整式的乘除运算.
7、B
【解析】
由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.
【详解】
设一次函数解析式为y=kx+b,
把(−1,1)、(1,−1)代入
解得,
所以一次函数解析式为y=−x,
把(0,m)代入得m=0.
故答案为:B.
此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.
8、C
【解析】
分析:根据平行四边形的面积,可得设 则在Rt中,用勾股定理即可解得.
详解:∵四边形ABCD是平行四边形,
∴
∴
设 则
在Rt中,
即
解得(舍去),
故选C.
点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【详解】
解:∵1,1,3,x,0,3,1的众数是3,
∴x=3,
先对这组数据按从小到大的顺序重新排序0,1,1,1,3,3,3,位于最中间的数是1,
∴这组数的中位数是1.
故答案为:1;
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
10、3或6
【解析】
对直角中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE的长.
【详解】
解:如图,若∠AEF=90°
∵∠B=∠BCD=90°=∠AEF
∴四边形BCFE是矩形
∵将ABEC沿着CE翻折
∴CB=CF
∵四边形BCFE是正方形
∴BE=BC-AD=6,
如图,若∠AFE=90°
∵将△BEC沿着CE翻折
∴CB=CF=6,∠B=∠EFC=90°,BE=EF
∵∠AFE+∠EFC=180°
∴点A,点F,点C三点共线
∴
∴AF=AC-CF=4
∵
∴
∴BE=3,
若∠EAF=90°,
∵CD=8> CF=6
∴点F不可能落在直线AD上
∴.不存在∠EAF=90
综上所述:BE=3或6
故答案为:3或6
本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.
11、k>
【解析】
【分析】根据反比例函数图象经过第一、三象限,可得2k-1>0,解不等式即可得.
【详解】由题意得:2k-1>0,
解得:k>,
故答案为k>.
【点睛】本题考查了反比例函数的图象与性质,对于反比例函数y=,当k>0时,图象位于一、三象限,在每一象限内,y随着x的增大而减小;当k
相关试卷
这是一份甘肃省庆阳镇原县联考2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省潍坊奎文区五校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。