终身会员
搜索
    上传资料 赚现金

    广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】

    立即下载
    加入资料篮
    广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】第1页
    广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】第2页
    广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】

    展开

    这是一份广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为( )
    A.3B.2C.2D.
    2、(4分)如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=3,CE=2,则平移的距离为( )
    A.1B.2C.3D.4
    3、(4分)如图,F是菱形ABCD的边AD的中点,AC与BF相交于E,于G,已知,则下列结论:;;:其中正确的结论是
    A.B.C.D.
    4、(4分) “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
    A.赛跑中,兔子共休息了50分钟
    B.乌龟在这次比赛中的平均速度是0.1米/分钟
    C.兔子比乌龟早到达终点10分钟
    D.乌龟追上兔子用了20分钟
    5、(4分)在平面直角坐标系中,下列函数的图象经过原点的是( )
    A.B.C.D.
    6、(4分)下列语句正确的是( )
    A.的平方根是6B.负数有一个平方根
    C.的立方根是D.8的立方根是2
    7、(4分)若分式方程=2+有增根,则a的值为( )
    A.4B.2C.1D.0
    8、(4分)如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=( )
    A.60°B.65°C.70°D.75°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是 (填“甲”或“乙“).
    10、(4分)如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;
    11、(4分)如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.
    12、(4分)计算的结果是______________。
    13、(4分)一次函数的图象与轴交于点________;与轴交于点______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.
    (1)求四边形ABCD的面积;
    (2)∠BCD是直角吗?说明理由.
    15、(8分)四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.求∠BAD的度数;
    16、(8分)分解因式:
    17、(10分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.
    (1)请直接写出点A的坐标:______;
    (2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.
    ①求k的值;
    ②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;
    ③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.
    18、(10分)如图,在四边形中,,点为的中点,,交于点,,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________ .
    20、(4分)若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.
    21、(4分)如图,于,于,且,,,则_______.
    22、(4分)有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是_________.
    23、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.
    25、(10分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.
    (1)求证:AE=BF;
    (2)当∠BAG=30°,且AB=2时,求EF-FG的值.
    26、(12分)如图,等腰直角三角形OAB的三个定点分别为、、,过A作y轴的垂线.点C在x轴上以每秒的速度从原点出发向右运动,点D在上以每秒的速度同时从点A出发向右运动,当四边形ABCD为平行四边形时C、D同时停止运动,设运动时间为.当C、D停止运动时,将△OAB沿y轴向右翻折得到△,与CD相交于点E,P为x轴上另一动点.
    (1)求直线AB的解析式,并求出t的值.
    (2)当PE+PD取得最小值时,求的值.
    (3)设P的运动速度为1,若P从B点出发向右运动,运动时间为,请用含的代数式表示△PAE的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.
    【详解】
    过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,
    在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,
    在直角三角形BDF中,BF=BC+CF=1+1=2,
    根据勾股定理得:BD=,
    故选D.
    本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.
    2、A
    【解析】
    根据图形可得:线段BE的长度即是平移的距离,
    又BC=3,EC=2,
    ∴BE=3−2=1.
    故选A.
    3、A
    【解析】
    证=,可得易证△AEF≌△AEG(SAS),所以,∠AFE=∠AGE,所以,;由=,可证=,连接BD,易证△ABF≌△BAO,可得,BF=AO,所以,AC=2BF;同理,可证△BOE≌△BGF,可得,OE=EG,所以,CE=CO+OE=BF+EG.
    【详解】
    因为,四边形ABCD是菱形,
    所以,,AB=AD=CD=BC,
    所以,=,
    所以,
    因为,
    所以,=,
    又因为,
    所以,,AG=,
    又因为F是菱形ABCD的边AD的中点,
    所以,AF=,
    所以,AF=AG,
    所以,易证△AEF≌△AEG(SAS),
    所以,∠AFE=∠AGE,
    所以,,
    所以,由=,
    可证=,
    连接BD,
    易证△ABF≌△BAO,
    所以,BF=AO,
    所以,AC=2BF,
    同理,可证△BOE≌△BGF,
    所以,OE=EG,
    所以,CE=CO+OE=BF+EG,
    综合上述,正确
    故选:A
    此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通,难度一般.
    4、D
    【解析】
    分析:根据图象得出相关信息,并对各选项一一进行判断即可.
    详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
    乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
    兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
    在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
    故选D.
    点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
    5、C
    【解析】
    根据函数图象过原点,则必须满足(0,0)点在图象上,代入计算看是否等式成立即可.
    【详解】
    解:要使图象过原点,则必须满足(0,0)在图象上代入计算可得:
    A 代入(0,0)可得: ,明显等式不成立,故A的曲线不过原点;
    B 为反比例函数肯定不过原点,故B的曲线不过原点;
    C代入(0,0)可得: ,明显等式成立,故C的直线线过原点;
    D代入(0,0)可得: ,明显等式不成立,故D的直线不过原点;
    故选C.
    本题主要考查点是否在图象上,如果点在图象上,则必须满足图象所在的解析式.
    6、D
    【解析】
    根据平方根和立方根的定义、性质求解可得.
    【详解】
    A、62的平方根是±6,此选项错误;
    B、负数没有平方根,此选项错误;
    C、(-1)2的立方根是1,此选项错误;
    D、8的立方根是2,此选项正确;
    故选:D.
    本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.
    7、A
    【解析】
    分式方程无解有两种可能,一种是转化为的整式方程本身没有解,一种是整式方程的解使分式方程的分母为0.
    【详解】
    原式可化为,因为分式方程无解,即等式不成立或无意义,当时,方程无意义,代入求得.
    理解无解的含义是解题的关键.
    8、D
    【解析】
    由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠B=∠C=∠D=∠DAB=90°,
    ∵△AEF是等边三角形,
    ∴AE=AF,∠EAF=60°,
    ∵AD=AB,AF=AE,
    ∴△ABF≌△ADE(HL),
    ∴∠BAF=∠DAE==15°,
    ∴∠AED=75°,
    故选D.
    本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、乙
    【解析】
    解:∵S甲2=2,S乙2=1.5,
    ∴S甲2>S乙2,
    ∴乙的射击成绩较稳定.
    故答案为乙.
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    10、60
    【解析】
    先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.
    【详解】
    解:∵∠BAC=120°,AB=AC,
    ∴∠C= ==30°,
    ∵AC的垂直平分线交BC于D,
    ∴AD=CD,
    ∴∠C=∠CAD=30°,
    ∵∠ADB是△ACD的外角,
    ∴∠ADB=∠C+∠CAD=30°+30°=60°.
    故答案为60°.
    本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.
    11、
    【解析】
    延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,由DE平分△ABC的周长,又CD=DB,得到ME=EC,根据中位线的性质可得DE=BM,再求出BM的长即可得到结论.
    【详解】
    解:延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,
    ∵DE平分△ABC的周长,CD=DB,
    ∴ME=EC,
    ∴DE=BM,
    ∵∠BAC=60°,
    ∴∠BAM=120°,
    ∵AM=AB,AN⊥BM,
    ∴∠BAN=60°,BN=MN,
    ∴∠ABN=30°,
    ∴AN=AB=1,∴BN=,
    ∴BM=2,
    ∴DE=,
    故答案为:.
    本题考查了三角形的中位线的性质,等腰三角形的性质,含30°的直角三角形的性质以及勾股定理等知识点,作出辅助线综合运用基本性质进行推理是解题的关键.
    12、
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    解:原式
    故答案为:
    本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则
    13、
    【解析】
    分别令x,y为0,即可得出答案.
    【详解】
    解:∵当时,;当时,
    ∴一次函数的图象与轴交于点,与轴交于点.
    故答案为:;.
    本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.
    三、解答题(本大题共5个小题,共48分)
    14、(1)四边形ABCD的面积=14;(2)是.理由见解析.
    【解析】
    (1)根据四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD即可得出结论;
    (2)先根据锐角三角函数的定义判断出∠FBC=∠DCG,再根据直角三角形的性质可得出∠BCF+∠DCG=90°,故可得出结论.
    【详解】
    (1)
    ∵四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD
    =5×51×52×41×2(1+5)×1
    =25
    =14;
    (2)是.理由如下:
    ∵tan∠FBC,tan∠DCG,∴∠FBC=∠DCG.
    ∵∠FBC+∠BCF=∠DCG+∠CDG=90°,∴∠BCF+∠DCG=90°,∴∠BCD是直角.
    本题考查了分割法求面积和锐角三角函数的定义,熟知直角三角形的性质是解答此题的关键.
    15、∠BAD=135°.
    【解析】
    分析:连接AC,则△ABC是等腰直角三角形,用勾股定理求出AC,再用勾股定理的逆定理判定∠DAC=90°.
    详解:如图,连接AC,
    Rt△ABC中,因为AB=BC,∠ABC=90°
    所以∠BAC=45°,由勾股定理得AC=2;
    △ACD中,因为AC2=4,AD2=1,CD2=5,
    所以AC2+AD2=CD2,所以∠DAC=90°,
    所以∠BAD=∠BAC+∠DAC=45°+90°=135°.
    故答案为135°.
    点睛:本题考查了勾股定理和勾股定理的逆定理的综合运用,直角三角形中已知两边的长,可用勾股定理求第三边的长,三角形中,已知三边的长,可用勾股定理的逆定理判定它是不是直角.
    16、.
    【解析】
    先提公因式2,再用完全平方公式进行分解即可。
    【详解】
    解:

    本题考查了综合提公因式法和公式法进行因式分解,因式分解时要先提公因式再用公式分解。
    17、(1)(0,1);(2)①k=;②N(-3,);③直线 l2的解析式为y=x+1.
    【解析】
    (1)令,求出相应的y值,即可得到A的坐标;
    (2)①先设出P的坐标,然后通过点的平移规律得出平移后 的坐标,然后将代入 中即可求出k的值;
    ②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形, 设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;
    ③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.
    【详解】
    (1)∵y=kx+1与y轴交于点A,
    令, ,
    ∴A(0,1).
    (2)①由题意得:P(m,km+1),
    ∵将点P向左平移3个单位,再向下平移1个单位,得点P′,
    ∴P′(m-3,km),
    ∵P′(m-3,km)在射线AB上,
    ∴k(m-3)+1=km,
    解得:k=.
    ②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.


    当 时,,解得 ,
    ∴ .
    设M(0,t),则AM=BM=1-t,
    在Rt△BOM中,OB2+OM2=BM2,
    即32+t2=(1-t)2,
    解得:t=,
    ∴M(0,),
    ∴OM=,BN=AM=1-=,
    ∴N(-3,).
    ③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,

    ∵∠BAC=15°,
    ∴△ABC是等腰直角三角形,
    ∴AB=BC,∠ABO+∠CBD=90°,
    又∵∠ABO+∠BAO=90°,
    ∴∠BAO=∠CBD,
    在和中,
    ∴△AOB≌△BDC(AAS),
    ∴AO=BD=1,OB=DC=3,
    ∴OD=OB+BD=3+1=7,
    ∴C(-7,3),
    设直线 l2的解析式为:y=ax+1,
    则-7a+1=3,
    解得:a=.
    ∴直线 l2的解析式为:y=x+1.
    本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.
    18、
    【解析】
    连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出结果.
    【详解】
    解:连接,作于,如图所示:
    则,点为的中点,,

    ,,
    ,,
    ,是直角三角形,
    ,,
    ,,,

    在中,由勾股定理得:;
    【点睛】本题考查勾股定理,解题关键在于求得EF=BE+BF.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    分析: 等量关系为:原来人均单价-实际人均单价=3,把相关数值代入即可.
    详解: 原来人均单价为,实际人均单价为,
    那么所列方程为,
    故答案为:
    点睛: 考查列分式方程;得到人均单价的关系式是解决本题的关键.
    20、
    【解析】
    由方程有两个不相等的实数根,可得△>0,建立关于a的不等式,解不等式求出a的取值范围即可.
    【详解】
    ∵关于的一元二次方程有两个不相等的实数根,
    ∴△=16+4a>0,
    解得,.
    故答案为:a>-4.
    本题考查了一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    21、140°
    【解析】
    由“”可证Rt△ABD≌Rt△ACD,可得,由三角形外角的性质可求的度数.
    【详解】
    解:,,
    在Rt△ABD和Rt△ACD中,

    ∴Rt△ABD≌Rt△ACD(HL),
    .
    故答案为:.
    本题考查了全等三角形的判定和性质,外角的性质,熟练运用全等三角形的判定是本题的关键.
    22、11.1
    【解析】
    根据平均数的公式求解即可,8个数的和加12个数的和除以20即可.
    【详解】
    解:根据平均数的求法:共8+12=20个数,这些数之和为8×11+12×12=232,
    故这些数的平均数是=11.1.
    故答案为:11.1.
    本题考查的是样本平均数的求法,,熟练掌握加权平均数公式是解答本题的关键.
    23、20
    【解析】
    根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
    【详解】
    解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
    所以A、B两地距离为:4×5=20(千米).
    故答案为:20
    本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA判定△AOE≌△COF,继而证得OE=OF.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,OA=OC,
    ∴∠OAE=∠OCF,
    在△AOE和△COF中,

    ∴△AOE≌△COF(ASA),
    ∴OE=OF.
    此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
    25、(1)证明见解析;(2)EF-FG=-1.
    【解析】
    分析:(1)首先根据角与角之间的等量代换得到∠ABF=∠DAE,结合AB=AD,∠AED=∠BFA,利用AAS证明△ABF≌△DAE,即可得到AE=BF;
    (2)首先求出BF和AE的长度,然后在Rt△BFG中求出BG=2FG,利用勾股定理得到BG2=FG2+BF2,进而求出FG的长,于是可得EF﹣FG的值.
    详解:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.
    又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.
    ∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AE=BF;
    (2)∵∠BAG=30°,AB=2,∠BEA=90°,∴BF=AB=1,AF=,∴EF=AF﹣AE=AF﹣BF=﹣1.
    ∵BF⊥AG,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG,由BG2=FG2+BF2,∴4FG2=FG2+1,∴FG=,∴EF﹣FG=﹣1﹣=﹣1.
    点睛:本题主要考查了正方形的性质、全等三角形的判定与性质以及勾股定理等知识,解答本题的关键是根据AAS证明△ABF≌△DAE,此题难度一般.
    26、(1);(2); (3)①当时,S△PAE=,②当时, S△PAE=.
    【解析】
    (1)设直线AB为,把B(-3,0)代入,求得k,确定解析式;再设设秒后构成平行四边形,根据题意列出方程,求出t即可;
    (2)过E作关于轴对于点,连接EE′交x轴于点P,则此时PE+PD最小.由(1)得到当t=2时,有C(,0),D(,3),再根据AB∥CD,求出直线CD和AB1的解析式,确定E的坐标;然后再通过乘法公式和线段运算,即可完成解答.
    (3)根据(1)可以判断有和两种情况,然后分类讨论即可.
    【详解】
    (1)解:设直线AB为,把B(-3,0)代入得:


    由题意得:
    设秒后构成平行四边形,则
    解之得:,
    (2)如图:过E作关于轴对于点,
    连接EE′交x轴于点P,则此时PE+PD最小.
    由(1)t=2得:
    ∴C(,0),D(,3)
    ∵AB∥CD
    ∴设CD为
    把C(,0)代入得
    b1=
    ∴CD为:
    易得为:

    解之得:E(,)

    (3)①当时
    S△PAE=S△PAB1-S△PEB1=
    ②当时:
    S△PAE=S△PAB1-S△PEB1=
    本题是一次函数的综合题型,主要考查了用待定系数求一次函数的关系式,点的坐标的确定,动点问题等知识点.解题的关键是扎实的基本功和面对难题的自信.
    题号





    总分
    得分

    相关试卷

    2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】:

    这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省滨州地区数学九上开学学业质量监测试题【含答案】:

    这是一份2024-2025学年山东省滨州地区数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map