终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学概率统计分章节特训专题02非线性回归方程专题练习(原卷版+解析)

    立即下载
    加入资料篮
    新高考数学概率统计分章节特训专题02非线性回归方程专题练习(原卷版+解析)第1页
    新高考数学概率统计分章节特训专题02非线性回归方程专题练习(原卷版+解析)第2页
    新高考数学概率统计分章节特训专题02非线性回归方程专题练习(原卷版+解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学概率统计分章节特训专题02非线性回归方程专题练习(原卷版+解析)

    展开

    这是一份新高考数学概率统计分章节特训专题02非线性回归方程专题练习(原卷版+解析),共30页。
    模型①:由最小二乘法公式求得与的线性回归方程;
    模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
    (1)根据表中数据,求模型②的回归方程.精确到个位,精确到.
    (2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
    参考公式、参考数据及说明:
    ①对于一组数据,,,,,,,其回归直线的斜率和截距的最小二乘法估计分别为.
    ②刻画回归效果的相关指数.
    ③参考数据:,.
    表中.
    例2. 近年来,随着国家综合国力的提升和科技的进步,截至2018年底,中国铁路运营里程达13.2万千米,这个数字比1949年增长了5倍;高铁运营里程突破2.9万千米,占世界高铁运营里程的以上,居世界第一位.如表截取了年中国高铁密度的发展情况(单位:千米万平方千米).
    已知高铁密度与年份代码之间满足关系式,为大于0的常数).若对两边取自然对数,得到,可以发现与线性相关.
    (1)根据所给数据,求关于的回归方程,保留到小数点后一位);
    (2)利用(1)的结论,预测到哪一年,高铁密度会超过30千米万平方千米.
    参考公式:设具有线性相关系的两个变量,的一组数据为,,2,,
    则回归方程的系数:,.
    参考数据:,,,,,.
    例3. 某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图1):
    产品的质量指数在的为三等品,在的为二等品,在的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元),以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率.
    (1)求每件产品的平均销售利润;
    (2)该公司为了解年营销费用(单位:万元)对年销售量(单位:万件)的影响,对近5年的年营销费用和年销售量数据做了初步处理,得到的散点图(如图2)及一些统计量的值.
    表中,,,
    根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.
    (ⅰ)建立关于的回归方程;
    (ⅱ)用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润-营销费用,取)
    参考公式:对于一组数据:,,,,其回归直线的斜率和截距的最小乘估计分别为,
    例4. 近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图
    (1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;
    (2)令,由散点图判断与哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)
    (3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准)
    参考数据:
    例5. 已知某种细菌的适宜生长温度为,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:)变化的规律,收集数据如下:
    对数据进行初步处理后,得到了一些统计量的值,如下表所示:
    其中,.
    (1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于的回归方程类型(结果精确到0.1);
    (2)当温度为时,该种细菌的繁殖数量的预报值为多少?
    参考公式:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:,.参考数据:.
    例6. 噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量(=1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.
    表中,。
    (1)根据散点图判断,与哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)
    (2)根据表中数据,求声音强度关于声音能量的回归方程;
    (3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是和,且.己知点的声音能量等于声音能量与之和。请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由。
    附:对于一组数据.其回归直线的斜率和截距的最小二乘估计分别为:.
    例7. 某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x(单位:亿元)对年销售额y(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中α,β,λ,t均为常数,e为自然对数的底数.
    现该公司收集了近12年的年研发资金投入量xi和年销售额yi的数据,i=1,2,⋯,12,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令ui=xi2,vi=lnyi(i=1,2,⋯,12),经计算得如下数据:
    (1)设ui和yi的相关系数为r1,xi和vi的相关系数为r2,请从相关系数的角度,选择一个拟合程度更好的模型;
    (2)(i)根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);
    (ii)若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?
    附:①相关系数r=i=1n(xi−x)(yi−y)i=1n(xi−x)2i=1n(yi−y)2,回归直线y=a+bx中斜率和截距的最小二乘估计公式分别为:b=i=1n(xi−x)(yi−y)i=1n(xi−x)2,a=y−bx;
    ② 参考数据:308=4×77,90≈9.4868,e4.4998≈90.
    例8. 习近平总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,这将进一步推动新能源汽车产业的迅速发展。以下是近几年我国新能源乘用车的年销售量数据及其散点图:
    (1)请根据散点图判断,与中哪一个更适宜作为年销售量关于年份代码的回归方程类型? (给出判断即可,不必说明理由)
    (2)根据(1)的判断结果及表中数据,建立关于的回归方程,并预测年我国新能源乘用车的销售量(精确到).
    附: 1.最小二乘法估计公式:
    例9. 某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示:
    (Ⅰ)利用散点图判断,和(其中,为大于的常数)哪一个更适合作为年研发费用和年销售量的回归方程类型(只要给出判断即可,不必说明理由);
    (Ⅱ)对数据作出如下处理:令,,得到相关统计量的值如下表:
    根据(Ⅰ)的判断结果及表中数据,求关于的回归方程;
    (Ⅲ)已知企业年利润(单位:千万元)与,的关系为(其中),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
    附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,
    例10.近年来随着互联网的高速发展,旧货交易市场也得以快速发展.某网络旧货交易平台对2018年某种机械设备的线上交易进行了统计,得到如图所示的频率分布直方图,和如图所示的散点图.现把直方图中各组的频率视为概率,用(单位:年)表示该设备的使用时间,(单位:万元)表示其相应的平均交易价格.
    (1)已知2018年在此网络旧货交易平台成交的该种机械设备为100台,现从这100台设备中,按分层抽样抽取使用时间的4台设备,再从这4台设备中随机抽取2台,求这2台设备的使用时间都在的概率.
    (2)由散点图分析后,可用作为此网络旧货交易平台上该种机械设备的平均交易价格关于其使用时间的回归方程.
    表中,
    (i)根据上述相关数据,求关于的回归方程;
    (ii)根据上述回归方程,求当使用时间时,该种机械设备的平均交易价格的预报值(精确到0.01).
    附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为
    参考数据:,,.
    第年
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    旅游人数(万人)
    300
    283
    321
    345
    372
    435
    486
    527
    622
    800
    回归方程


    30407
    14607
    5.5
    449
    6.05
    83
    4195
    9.00
    年份
    2012
    2013
    2014
    2015
    2016
    年份代码
    1
    2
    3
    4
    5
    高铁密度
    9.75
    11.49
    17.14
    20.66
    22.92
    16.30
    24.87
    0.41
    1.64
    x
    50
    100
    150
    200
    300
    400
    t
    90
    65
    45
    30
    20
    20
    温度/
    12
    14
    16
    18
    20
    22
    24
    繁殖数量/个
    20
    25
    33
    27
    51
    112
    194
    18
    66
    3.8
    112
    4.3
    1428
    20.5
    45.7
    0.51
    5.1
    x
    y
    i=112(xi−x)2
    i=112(yi−y)2
    u
    v
    20
    66
    770
    200
    460
    4.20
    i=112(ui−u)2
    i=112(ui−u)(yi−y)
    i=112(vi−v)2
    i=112(xi−x)(vi−v)
    3125000
    21500
    0.308
    14
    年份
    2013
    2014
    2015
    2016
    2017
    年份代码
    新能源乘用车年销量(万辆)
    其中
    专题2 非线性回归方程
    例1. 某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:
    该景点为了预测2021年的旅游人数,建立了与的两个回归模型:
    模型①:由最小二乘法公式求得与的线性回归方程;
    模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
    (1)根据表中数据,求模型②的回归方程.精确到个位,精确到.
    (2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
    参考公式、参考数据及说明:
    ①对于一组数据,,,,,,,其回归直线的斜率和截距的最小二乘法估计分别为.
    ②刻画回归效果的相关指数.
    ③参考数据:,.
    表中.
    【解析】解:(1)对取对数,得,
    设,,先建立关于的线性回归方程.

    ,.
    模型②的回归方程为;
    (2)由表格中的数据,有,即,
    即,,
    模型①的相关指数小于模型②的,说明回归模型②的拟合效果更好.
    2021年时,,预测旅游人数为(万人).
    例2. 近年来,随着国家综合国力的提升和科技的进步,截至2018年底,中国铁路运营里程达13.2万千米,这个数字比1949年增长了5倍;高铁运营里程突破2.9万千米,占世界高铁运营里程的以上,居世界第一位.如表截取了年中国高铁密度的发展情况(单位:千米万平方千米).
    已知高铁密度与年份代码之间满足关系式,为大于0的常数).若对两边取自然对数,得到,可以发现与线性相关.
    (1)根据所给数据,求关于的回归方程,保留到小数点后一位);
    (2)利用(1)的结论,预测到哪一年,高铁密度会超过30千米万平方千米.
    参考公式:设具有线性相关系的两个变量,的一组数据为,,2,,
    则回归方程的系数:,.
    参考数据:,,,,,.
    【解析】解:(1)对两边取自然对数,得;
    令,,,2,3,,;
    得与具有线性相关关系,
    计算,,
    ,,

    故关于的回归方程为,
    即;
    (2)在(1)的回归方程中,,高铁密度超过30千米万平方千米;
    即,
    ,.,
    即时,高铁密度超过30千米万平方千米;
    所以预测2019年,高铁密度超过30千米万平方千米.
    例3. 某公司生产一种产品,从流水线上随机抽取100件产品,统计其质量指数并绘制频率分布直方图(如图1):
    产品的质量指数在的为三等品,在的为二等品,在的为一等品,该产品的三、二、一等品的销售利润分别为每件1.5,3.5,5.5(单位:元),以这100件产品的质量指数位于各区间的频率代替产品的质量指数位于该区间的概率.
    (1)求每件产品的平均销售利润;
    (2)该公司为了解年营销费用(单位:万元)对年销售量(单位:万件)的影响,对近5年的年营销费用和年销售量数据做了初步处理,得到的散点图(如图2)及一些统计量的值.
    表中,,,
    根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.
    (ⅰ)建立关于的回归方程;
    (ⅱ)用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润-营销费用,取)
    参考公式:对于一组数据:,,,,其回归直线的斜率和截距的最小乘估计分别为,
    【解析】(1)设每件产品的销售利润为元,则的所有可能取值为1.5,3.5,5.5
    由直方图可得:一、二、三等品的频率分别为0.4,0.45,0.15,
    所以,

    ,
    所以:随机变量的分布列为:
    所以,
    故每件产品的平均销售利润为4元.
    (2)(ⅰ)由得,,
    令,,,则,
    由表中数据可得,,

    所以,,即
    因为,所以
    故所求的回归方程为
    (ⅱ)设年收益为万元,则
    设,,则
    当时,,在单调递增,
    当时,,在单调递减.
    所以,当,即时,有最大值为768
    即该厂应投入256万元营销费,能使得该产品一年的收益达到最大768万元.
    例4. 近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了天.得到的统计数据如下表,为收费标准(单位:元/日),为入住天数(单位:),以频率作为各自的“入住率”,收费标准与“入住率”的散点图如图
    (1)若从以上六家“农家乐”中随机抽取两家深入调查,记为“入住率”超过的农家乐的个数,求的概率分布列;
    (2)令,由散点图判断与哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(结果保留一位小数)
    (3)若一年按天计算,试估计收费标准为多少时,年销售额最大?(年销售额入住率收费标准)
    参考数据:
    【解析】(1)的所有可能取值为.
    则 ,
    的分布列
    (2)由散点图可知更适合于此模型.
    其中,
    所求的回归方程为
    (3)

    若一年按天计算,当收费标准约为元/日时,年销售额最大,最大值约为元.
    例5. 已知某种细菌的适宜生长温度为,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:)变化的规律,收集数据如下:
    对数据进行初步处理后,得到了一些统计量的值,如下表所示:
    其中,.
    (1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于的回归方程类型(结果精确到0.1);
    (2)当温度为时,该种细菌的繁殖数量的预报值为多少?
    参考公式:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:,.参考数据:.
    【解析】(1)绘出的散点图如图所示,根据散点图判断更适合作为该种细菌的繁殖数量关于的回归方程类型;
    (2)∵,∴,
    ∴,,
    ∴,,当温度为时,该种细菌的繁殖数量的预报值为.
    例6. 噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量(=1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.
    表中,。
    (1)根据散点图判断,与哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)
    (2)根据表中数据,求声音强度关于声音能量的回归方程;
    (3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是和,且.己知点的声音能量等于声音能量与之和。请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由。
    附:对于一组数据.其回归直线的斜率和截距的最小二乘估计分别为:.
    【解析】(1)更适合.
    (2)令,先建立关于的线性回归方程.
    由于,

    ∴关于的线性回归方程是,
    即关于的回归方程是.
    (3)点的声音能量,
    ∵,

    ,
    根据(1)中的回归方程,点的声音强度的预报值

    ∴点会受到巢声污染的干扰.
    例7. 某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x(单位:亿元)对年销售额y(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中α,β,λ,t均为常数,e为自然对数的底数.
    现该公司收集了近12年的年研发资金投入量xi和年销售额yi的数据,i=1,2,⋯,12,并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令ui=xi2,vi=lnyi(i=1,2,⋯,12),经计算得如下数据:
    (1)设ui和yi的相关系数为r1,xi和vi的相关系数为r2,请从相关系数的角度,选择一个拟合程度更好的模型;
    (2)(i)根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);
    (ii)若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?
    附:①相关系数r=i=1n(xi−x)(yi−y)i=1n(xi−x)2i=1n(yi−y)2,回归直线y=a+bx中斜率和截距的最小二乘估计公式分别为:b=i=1n(xi−x)(yi−y)i=1n(xi−x)2,a=y−bx;
    ② 参考数据:308=4×77,90≈9.4868,e4.4998≈90.
    【解析】解:(1)r1=i=112(ui−u)(yi−y)i=112(ui−u)2i=112(yi−y)2=215003125000×200=2150025000=4350=0.86,
    r2=i=112(xi−x)(vi−v)i=112(xi−x)2i=112(vi−v)2=14770×0.308=1477×0.2=1011≈0.91,
    则r1

    相关试卷

    新高考数学概率统计分章节特训专题19概率最值问题专题练习(原卷版+解析):

    这是一份新高考数学概率统计分章节特训专题19概率最值问题专题练习(原卷版+解析),共19页。试卷主要包含了 绿水青山就是金山银山等内容,欢迎下载使用。

    新高考数学概率统计分章节特训专题18保险问题专题练习(原卷版+解析):

    这是一份新高考数学概率统计分章节特训专题18保险问题专题练习(原卷版+解析),共23页。

    新高考数学概率统计分章节特训专题13超几何分布专题练习(原卷版+解析):

    这是一份新高考数学概率统计分章节特训专题13超几何分布专题练习(原卷版+解析),共10页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map