广东省汕尾市甲子镇瀛江学校2024年九上数学开学检测试题【含答案】
展开
这是一份广东省汕尾市甲子镇瀛江学校2024年九上数学开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形中,分别是的中点,连接,则的周长为( )
A.B.C.D.
2、(4分)如图,△ABC为直角三角形,∠C=90°,AC=6,BC=8,以点C为圆心,以CA为半径作⊙C,则△ABC斜边的中点D与⊙C的位置关系是( )
A.点D在⊙C上B.点D在⊙C内
C.点D在⊙C外D.不能确定
3、(4分)使代数式有意义的x的取值范围是( )
A.B.C.D.
4、(4分)将直线向下平移个单位后所得直线的解析式为( )
A.B.C.D.
5、(4分)如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么△ABP的面积与点P运动的路程之间的函数图象大致是( ).
A.B.C.D.
6、(4分)下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.1,2,3B.4,6,8C.6,8,10D.13,14,15
7、(4分)下列根式中是最简根式的是( )
A. B. C. D.
8、(4分)如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为( )
A.65°B.60°
C.55°D.45°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平行四边形ABCD中,AD=13,BAD和ADC的角平分线分别交BC于E,F,且EF=6,则平行四边形的周长是____________________
10、(4分)分解因式:2x2-8x+8=__________.
11、(4分)如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.
12、(4分)若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.
13、(4分)某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
三、解答题(本大题共5个小题,共48分)
14、(12分)问题情境:
平面直角坐标系中,矩形纸片OBCD按如图的方式放置已知,,将这张纸片沿过点B的直
线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
数学探究:
点C的坐标为______;
求点E的坐标及直线BE的函数关系式;
若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
若存在,直接写出相应的点Q的坐标;若不存在,说明理由.
15、(8分)已知直线y1=2x与直线y2=﹣2x+4相交于点A.以下结论:
①点A的坐标为A(1,2);②当x=1时,两个函数值相等:
③当x<1时,y1<y2; ④直线y1=2x与直线y2=﹣2x+4在平面直角坐标系中的位置关系是平行.其中正确的个数有( )个.
A.4B.3C.2D.1
16、(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中A(1,1)、B(4,4)、C(5,1).
(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△A2B2C2,A、B、C的对应点分别是A2、B2、C2;
(3)连CB2,直接写出点B2、C2的坐标B2: 、C2: .
17、(10分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
18、(10分)如图,在中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.
(1)求证:四边形AFCE是平行四边形;
(2)若,°,.
①直接写出的边BC上的高h的值;
②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→矩形→平行四边形→正方形→平行四边形
C.平行四边形→菱形→平行四边形→菱形→平行四边形
D.平行四边形→菱形→平行四边形→矩形→平行四边形
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据:23,32,18,x,12,它的中位数是20,则这组数据的平均数为______.
20、(4分)已知关于的方程的一个解为1,则它的另一个解是__________.
21、(4分)方程x2=x的解是_____.
22、(4分)小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)
如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.
23、(4分)一组数据15、13、14、13、16、13的众数是______,中位数是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算与化简:
(1)-;
(2)(3+)2
(3)+;
(4)÷(x-)
25、(10分)李师傅去年开了一家商店.今年1月份开始盈利,2月份盈利3000元,4月份的盈利达到4320元,且从2月到4月,每月盈利的平均增长率都相同.
(1)求每月盈利的平均增长率;
(2)按照这个平均增长率,预计5月份这家商店的盈利可达到多少元?
26、(12分)对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(1,﹣2)=1.
(1)求a,b的值;
(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.
【详解】
解:∵四边形ABCD是菱形,
∴AB=AD=BC=CD=2cm,∠B=∠D,
∵E、F分别是BC、CD的中点,
∴BE=DF,
在△ABE和△ADF中,,
∴△ABE≌△ADF(SAS),
∴AE=AF,∠BAE=∠DAF.
连接AC,
∵∠B=∠D=60°,
∴△ABC与△ACD是等边三角形,
∴AE⊥BC,AF⊥CD,
∴∠BAE=∠DAF=30°,
∴∠EAF=60°,BE=AB=1cm,
∴△AEF是等边三角形,AE=,
∴周长是.
故选:D.
本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.
2、B
【解析】
根据勾股定理,由△ABC为直角三角形,∠C=90°,AC=6,BC=8,求得AB=10,然后根据直角三角形的的性质,斜边上的中线等于斜边长的一半,即CD=5<AC=6,所以点D在在⊙C内.
故选B.
3、A
【解析】
根据二次根式被开方数为非负数可得关于x的不等式,解不等式即可得.
【详解】
使代数式有意义,则x-10≥0,
解得:x≥10,
故选A.
本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
4、D
【解析】
只向下平移,让比例系数不变,常数项减去平移的单位即可.
【详解】
直线向下平移个单位后所得直线的解析式为
故选:D
本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.
5、B
【解析】
首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的高一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.
【详解】
从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);
因为从点C到点D,△ABP的面积一定:2×1÷2=1,
所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),
所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:
.
故选B.
此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.
6、C
【解析】
判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22=5≠32,故不能组成直角三角形,错误;
B、42+62≠82,故不能组成直角三角形,错误;
C、62+82=102,故能组成直角三角形,正确;
D、132+142≠152,故不能组成直角三角形,错误.
故选:C.
考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
7、B
【解析】
试题解析:A选项中,被开方数中含b2,所以它不是最简二次根式,故本选项错误;
B选项中,的被开方数不能因式分解,不含开方开的尽的因式,是最简二次根式,故本选项正确;
C选项中,被开方数含分母,所以它不是最简二次根式,故本选项错误;
D选项中,被开方数含能开得尽方的因数,所以它不是最简二次根式,故本选项错误.
故选B.
8、A
【解析】
根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.
【详解】
由题意可得:MN是AC的垂直平分线,
则AD=DC,故∠C=∠DAC,
∵∠C=30°,
∴∠DAC=30°,
∵∠B=55°,
∴∠BAC=95°,
∴∠BAD=∠BAC-∠CAD=65°,
故选A.
此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、41或33.
【解析】
需要分两种情况进行讨论.由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则BE=AB;同理可得,CF=CD=1.而AB+CD=BE+CF=BC+FE=13+6=19,或 AB+CD=BE+CF=BC-FE=13-6=7由此可以求周长.
【详解】
解:分两种情况,(1)如图,当AE、DF相交时:
∵AE平分∠BAD,
∴∠1=∠2
∵平行四边形ABCD中,AD∥BC,BC=AD=13,EF=6
∴∠1=∠3
∴∠2=∠3
∴AB=BE
同理CD=CF
∴AB+CD=BE+CF=BC+FE=13+6=19
∴平行四边形ABCD的周长= AB+CD+ BC+AD=19+13×2=41;
(二)当AE、DF不相交时:
由角平分线和平行线,同(1)方法可得AB=BE,CD=CF
∴AB+CD=BE+CF=BC-FE=13-6=7
∴平行四边形ABCD的周长= AB+CD+ BC+AD=7+13×2=33;
故答案为:41或33.
本题考查角平分线的定义、平行四边形的性质、平行线的性质等知识,解题关键“角平分线+一组平行线=等腰三角形”.
10、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
11、6
【解析】
∵菱形ABCD中,AB=4,AD的垂直平分线交AC于点N,
∴CD=AB=4,AN=DN,
∵△CDN的周长=CN+CD+DN=10,
∴CN+4+AN=10,
∴CN+AN=AC=6.
故答案为6.
12、丁
【解析】
首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.
【详解】
∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,
∴S丁2<S甲2<S乙2<S丙2,
∴成绩最稳定的是丁,
故答案为:丁.
此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
13、2
【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
【详解】
解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
解得, ,
则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.
本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)(10,6);(2) ), ;(3)见解析.
【解析】
(1)根据矩形性质可得到C的坐标;(2)设,由折叠知,,,在中,根据勾股定理得,,,在中,根据勾股定理得,,即,解得,可得;由待定系数法可求直线BE的解析式;(3)存在,理由:由知,,
,设,分两种情况分析:当BQ为的对角线时;当BQ为边时.
【详解】
解:四边形OBCD是矩形,
,
,,
,
故答案为;
四边形OBCD是矩形,
,,,
设,
,
由折叠知,,,
在中,根据勾股定理得,,
,
在中,根据勾股定理得,,
,
,
,
设直线BE的函数关系式为,
,
,
,
直线BE的函数关系式为;
存在,理由:由知,,
,
能使以A,B,P,Q为顶点的四边形是平行四边形,
,
当BQ为的对角线时,
,
点B,P在x轴,
的纵坐标等于点A的纵坐标6,
点Q在直线BE:上,
,
,
,
当BQ为边时,
与BP互相平分,
设,
,
,
,
即:直线BE上是存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形,点或.
本题考核知识点:一次函数的综合运用. 解题关键点:熟记一次函数性质和特殊平行四边形的性质和判定.
15、B
【解析】
联立y1=2x,y2=-2x+4解方程组可得A点坐标,然后把x=1代入两个函数解析式可得当x=1时,y1=2,y2=2;画出两函数图象可从图象上得到当x
相关试卷
这是一份广东汕尾甲子镇瀛江学校2024年数学九上开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省汕尾市甲子镇瀛江学校数学九上开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东汕尾甲子镇瀛江学校数学九年级第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。