北京首都师范大第二附属中学2025届九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。设平均每次降价的百分率为,根据题意所列方程正确的是( )
A.B.C.D.
2、(4分)下列四组线段中,可以构成直角三角形的是( )
A.2,3,4B.3,4,5C.4,5,6D.7,8,9
3、(4分)如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是( )
A.52B.42C.76D.72
4、(4分)函数的图象经过点,的值是( )
A.B.C.D.
5、(4分)如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是( )
A.B.
C.D.
6、(4分)如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是 ( )
A.垂直B.相等C.平分D.平分且垂直
7、(4分)下列图形是轴对称的是( )
A.B.C.D.
8、(4分)下列说法:
①对角线互相垂直的四边形是菱形;
②矩形的对角线垂直且互相平分;
③对角线相等的四边形是矩形;
④对角线相等的菱形是正方形;
⑤邻边相等的矩形是正方形.其中正确的是( )
A.个B.个C.个D.个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的方程=1的解是正数,则m的取值范围是________ .
10、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
11、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
12、(4分)计算:_________
13、(4分)若-,则的取值范围是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.
(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.
15、(8分)如图,在平面直角坐标系中,正比例函数与函数的图象相交于点,轴于点B.平移直线,使其经过点B,得到直线l,求直线l所对应的函数表达式.
16、(8分)如图,E、F是平行四边形ABCD的对角线AC上的点,且CE=AF.
求证:BE∥DF.
17、(10分)已知 ,,求下列代数式的值:
(1)x2+y2;
(2).
18、(10分)如图,直线的解析式为,且与轴交于点D,直线经过点、,直线、交于点C.
(1)求直线的解析表达式;
(2)求的面积;
(3)在直线上存在异于点C的另一点P,使得与的面积相等,请求出点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察下列各式,并回答下列问题:
①;②;③;……
(1)写出第④个等式:________;
(2)将你猜想到的规律用含自然数的代数式表示出来,并证明你的猜想.
20、(4分)化简:=_______.
21、(4分)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2=_____.
22、(4分)我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.
23、(4分)如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校学生会调查了八年级部分学生对“垃圾分类”的了解程度(1)在确定调查方式时,学生会设计了以下三种方案,其中最具有代表性
的方案是________;
方案一:调查八年级部分男生;
方案二:调查八年级部分女生;
方案三:到八年级每个班去随机调查一定数量的学生.
(2)学生会采用最具有代表性的方案进行调查后,将收集到的数据绘制成如下两幅不完整的统计图,如图①、图②.请你根据图中信息,回答下列问题:
①本次调查学生人数共有_______名;
②补全图①中的条形统计图,图②中了解一点的圆心角度数为_______;
③根据本次调查,估计该校八年级500名学生中,比较了解“垃圾分类”的学生大约有_______名.
25、(10分)如图,在中,,、分别是、的中点,连接,过作交的延长线于.
(1)证明:四边形是平行四边形;
(2)若四边形的周长是,的长为,求线段的长度.
26、(12分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.
(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.
(1)如图(1)当时,线段、所在直线夹角为______.
(2)如图(2)当时,线段、所在直线夹角为_____.
(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;
(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.
(运用拓广)运用所形成的结论求解下面的问题:
(4)如图(4),四边形中,,,,,,试求的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),
则列出的方程是36×(1-x)2=1.
故选C.
2、B
【解析】
不能构成直角三角形,故A选项错误;
可以构成直角三角形,故B选项正确;
不能构成直角三角形,故C选项错误;
不能构成直角三角形,故D选项错误;
故选B.
如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
3、C
【解析】
解:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得:x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.
4、A
【解析】
直接把点(1,m)代入正比例函数y=1x,求出m的值即可.
【详解】
解:∵正比例函数y=1x的图象经过点(1,m),
∴m=1.
故选:A.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
5、B
【解析】
根据勾股定理的逆定理对各选项进行逐一判断即可.
【详解】
解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项错误;
B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本选项正确;
C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本选项错误;
D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本选项错误.
故选B.
本题考查勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题关键.
6、D
【解析】
先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.
【详解】
解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.
∵A′O=OB=,AO=OC=2,
∴线段A′B与线段AC互相平分,
又∵∠AOA′=45°+45°=90°,
∴A′B⊥AC,
∴线段A′B与线段AC互相垂直平分.
故选D.
本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.
7、D
【解析】
根据图形的特点结合轴对称图形和中心对称图形的概念解答.
【详解】
解:A、既不是轴对称图形,也不是中心对称图形,故本项错误;
B、既不是轴对称图形,也不是中心对称图形,故本项错误;
C、是中心对称图形,不是轴对称图形,故本项错误;
D、是轴对称图形,故本项正确;
故选择:D.
此题考查了轴对称图形和中心对称图形的概念,熟记的定义是解题的关键.
8、B
【解析】
利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.
【详解】
解:①对角线互相垂直的四边形不一定是菱形,故①错误;
②矩形的对角线相等且互相平分,故②错误;
③对角线相等的四边形不一定是矩形,故③错误;
④对角线相等的菱形是正方形,故④正确,
⑤邻边相等的矩形是正方形,故⑤正确
故选B.
本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m<﹣2且m≠﹣1
【解析】
首先根据=1,可得x=-m-2;然后根据关于x的方程=1的解是正数,求出m的取值范围即可.
【详解】
∵=1,
∴x=-m-2,
∵关于x的方程=1的解是正数,
∴-m-2>0,
解得m<-2,
又∵x=-m-2≠2,
∴m≠-1,
∴m的取值范围是:m<-2且m≠-1.
故答案为:m<-2且m≠-1.
此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
10、1
【解析】
把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
【详解】
∵点A(1,n)在一次函数y=3x﹣2的图象上,
∴n=3×1﹣2=1.
故答案为:1.
本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
11、
【解析】
如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
【详解】
解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
∵AB=AC=4,,
∴CH=1,AH=NB=
,BC=2,
∵AM∥BC,
∴∠M=∠DBC,
在△ADM和△CDB中,
,
∴△ADM≌△CDB(AAS),
∴AM=BC=2,DM=BD,
在RT△BMN中,∵BN=,MN=3,
∴,
∴BD=DM=,
∵BC=CD=BE=DE=2,
∴四边形EBCD是菱形,
∴EC⊥BD,BO=OD=,EO=OC,
∵AD=DC,
∴AE∥OD,AE=2OD=.
故答案为.
本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.
12、1
【解析】
根据同分母的分式相加减的法则计算即可.
【详解】
原式=.
故答案为:1.
本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
13、
【解析】
利用二次根式的性质()及绝对值的性质化简(),即可确定出x的范围.
【详解】
解:∵,
∴.
∴,即.
故答案为: .
本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)证明见解析(3)当BE⊥CD时,∠EFD=∠BCD
【解析】
(1)先判断出△ABC≌△ADC得到∠BAC=∠DAC,再判断出△ABF≌△ADF得出∠AFB=∠AFD,最后进行简单的推算即可;
(2)先由平行得到角相等,用等量代换得出∠DAC=∠ACD,最后判断出四边相等;
(3)由(2)得到判断出△BCF≌△DCF,结合BE⊥CD即可.
【详解】
(1)证明:在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
在△ABF和△ADF中,
∴△ABF≌△ADF(SAS),
∴∠AFB=∠AFD,
∵∠CFE=∠AFB,
∴∠AFD=∠CFE,
∴∠BAC=∠DAC,∠AFD=∠CFE;
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠BAC=∠ACD,
∴∠DAC=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;
(3)BE⊥CD时,∠BCD=∠EFD;理由如下:
∵四边形ABCD是菱形,
∴BC=CD,∠BCF=∠DCF,
∵CF=CF,
∴△BCF≌△DCF,
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠BCD=∠EFD.
15、.
【解析】
求出A点的坐标,求出B点的坐标,再用待定系数法求出正比例函数的解析式,最后求出一次函数的解析式即可.
【详解】
解:将代入中,,∴
∵轴于点B,.
将代入中,,解得
∴设直线l所对应的函数表达式为.
将代入上式,得 ,解得.
∴直线l所对应的函数表达式是.
故答案为:.
本题考查平移的性质,反比例函数图象上点的坐标特征,用待定系数法求函数的解析式等知识点,能用待定系数法求出函数的解析式是解题的关键.
16、证明见解析.
【解析】
由AF=CE可得AE=CF,再结合平行四边形的性质证明△ABE≌△CDF,从而得出∠BEA=∠CFD,由此可得∠BEF=∠DFE,进而可证明BE∥DF.
【详解】
证明:∵AF=CE,
∴AF﹣EF=CE﹣EF.
∴AE=CF.
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠BAE=∠DCF.
在△ABE和△CDF中
∵,
∴△ABE≌△CDF(SAS).
∴∠BEA=∠CFD,
∴∠BEF=∠DFE,
∴BE∥DF.
此题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.
17、 (1) 8;(2) 4.
【解析】
将 x2+y2变形为(x+y)2-2xy,再将x+y与xy的值代入即可;
将整理为,再将x2+y2与xy的值代入即可.
【详解】
(1)∵x=+1,y=-1,
∴x+y=2,xy=2,
∴x2+y2
=(x+y)2-2xy
=(2)2-2×2
=12-4
=8.
(2)∵x=+1,y=-1,
∴x2+y2=8,xy=2,
∴+
=
=
=4.
本题考查了分式的化简求值,以及二次根式的化简求值,熟练掌握运算法则是解题的关键.
18、(1);(2);(3)P(6,3).
【解析】
试题分析:(1)利用待定系数法求直线的解析表达式;
(2)由方程组得到C(2,﹣3),再利用x轴上点的坐标特征确定D点坐标,然后根据三角形面积公式求解;
(3)由于△ADP与△ADC的面积相等,根据三角形面积公式得到点D与点C到AD的距离相等,则D点的纵坐标为3,对于函数,计算出函数值为3所对应的自变量的值即可得到D点坐标.
试题解析:(1)设直线的解析表达式为,把A(4,0)、B(3,)代入得:,解得:,所以直线的解析表达式为;
(2)解方程组:,得:,则C(2,﹣3);当y=0时,,解得x=1,则D(1,0),所以△ADC的面积=×(4﹣1)×3=;
(3)因为点D与点C到AD的距离相等,所以D点的纵坐标为3,当y=3时,,解得x=6,所以D点坐标为(6,3).
考点:两条直线相交或平行问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(1);(2)猜想:
【解析】
(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;
(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.
【详解】
(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:
故答案为:
(2)猜想:用含自然数的代数式可表示为:
证明:左边右边,所以猜想正确.
本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.
20、
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
解:原式=.
故答案为:.
此题主要考查了实数运算,正确掌握二次根式的性质是解题关键.
21、-3
【解析】
根据一元二次方程根与系数的关系即可解答.
【详解】
由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2
∴x1+x2+x1x2=﹣3
故答案为﹣3
本题考查了一元二次方程根与系数的关系,解题的关键是熟练运用根与系数的关系.
22、4.1
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.
【详解】
解:1丈=10尺,
设折断处离地面的高度为x尺,则斜边为(10-x)尺,
根据勾股定理得:x2+32=(10-x)2
解得:x=4.1.
答:折断处离地面的高度为4.1尺.
故答案为:4.1.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
23、6
【解析】
首先在Rt△ABC中,∠A=90°,AB=3,BC=5,根据勾股定理,求出AC=4,然后求出以AC为直径的半圆面积为2π,以AB为直径的半圆面积为,以BC为直径的半圆面积为,Rt△ABC的面积为6,阴影部分的面积为2π+-(-6),即为6.
【详解】
解:∵在Rt△ABC中,∠A=90°,AB=3,BC=5,
∴
以AC为直径的半圆面积为2π,
以AB为直径的半圆面积为,
以BC为直径的半圆面积为,
Rt△ABC的面积为6
阴影部分的面积为2π+-(-6),即为6.
此题主要考查勾股定理和圆面积公式的运用,熟练掌握,即可得解.
二、解答题(本大题共3个小题,共30分)
24、(1)方案三;(2)①120;②216;③150.
【解析】
(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)①由不了解的人数和所占的比例可得出调查总人数;
②先求出了解一点的人数和所占比例,再用360°乘以这个比例可得圆心角度数;
③用八年级学生人数乘以比较了解“垃圾分类”的学生比例可得答案。
【详解】
解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)①不了解的有12人,占10%,所以本次调查学生人数共有12÷10%=120名;
②了解一点的人数是120-12-36=72人,所占比例为,所以了解一点的圆心角度数为360°×60%=216°,补全的图形如下图
故答案为:216;
③500×=150名
故答案为:150
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
25、(1)见解析;(2).
【解析】
(1)由三角形中位线定理推知,,然后结合已知条件“”,利用两组对边相互平行得到四边形为平行四边形;
(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到,即可得出四边形的周长,故,然后根据勾股定理即可求得;
【详解】
解:(1)、分别是、的中点,是延长线上的一点,
是的中位线,
.,
又,
四边形是平行四边形;
(2)解:四边形是平行四边形;
,
是斜边上的中线,
,
四边形的周长,
四边形的周长为,的长,
,
在中,,
,即,
解得,,
本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.
26、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4).
【解析】
(1)通过作辅助线如图1,延长DC交AB于F,交BO于E,可以通过旋转性质得到AB=CD,OA=OC,BO=DO,证明△AOB≌△COD,进而求得∠B=∠D得∠BFE=∠EOD=90°
(2)通过作辅助线如图2,延长DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°
(3)通过作辅助线如图3,直线与直线所夹的锐角与旋转角互补, 延长,交于点通过证明得,再通过平角的定义和四边形内角和定理,证得;
形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;
(4)通过作辅助线如图:将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,可得,进一步得到△BDF是等边三角形,,再利用勾股定理求得.
【详解】
(1)解:(1)如图1,延长DC交AB于F,交BO于E,
∵α=90°
∴∠BOD=90°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=90°
故答案为:90°
(2)如图2,延长DC交AB于F,交BO于E,
∵α=60°
∴∠BOD=60°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=60°
故答案为:60°
(3)直线与直线所夹的锐角与旋转角互补,
延长,交于点
∵线段绕点顺时针旋转得线段,
∴,,
∴
∴
∴
∵
∴
∴
∴直线与直线所夹的锐角与旋转角互补;
形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;
(4)将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,
∴旋转角为,
∴,,,
∴△BDF是等边三角形,
∵,,
∴,
∴.
本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.
题号
一
二
三
四
五
总分
得分
北京市西城区北京师范大附属中学2024-2025学年九上数学开学监测模拟试题【含答案】: 这是一份北京市西城区北京师范大附属中学2024-2025学年九上数学开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京市西城区北京师范大第二附属中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2025届北京市西城区北京师范大第二附属中学数学九年级第一学期开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市首都师范大附属中学数学九年级第一学期开学监测试题【含答案】: 这是一份2024年北京市首都师范大附属中学数学九年级第一学期开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。