北京市海淀区清华大附中2025届数学九上开学学业水平测试模拟试题【含答案】
展开
这是一份北京市海淀区清华大附中2025届数学九上开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( )
A.三角形中有一个内角小于或等于60° B.三角形中有两个内角小于或等于60°
C.三角形中有三个内角小于或等于60° D.三角形中没有一个内角小于或等于60°
2、(4分)如图,点P是正方形内一点,连接并延长,交于点.连接,将绕点顺时针旋转90°至,连结.若,,,则线段的长为( )
A.B.4C.D.
3、(4分)若,则下列式子中错误的是( )
A.B.C.D.
4、(4分)二次根式中,字母a的取值范围是( )
A.a<1B.a≤1C.a≥1D.a>1
5、(4分)在下列图形中,既是轴对称图形,又是中心对称图形的是 ( )
A.B.C.D.
6、(4分)计算的结果是( )
A.0B.C.D.1
7、(4分)若关于的不等式组有三个整数解,且关于的分式方程有整数解,则满足条件的所有整数的和是( )
A.B.C.D.
8、(4分)如图,在中,对角线与相交于点,是边的中点,连接.若,则的度数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
10、(4分)已知菱形ABCD的对角线长度是8和6,则菱形的面积为_____.
11、(4分)已知一组数据6,6,1,x,1,请你给正整数x一个值_____,使这组数据的众数为6,中位数为1.
12、(4分)如图,是内的一点,,点分别在的两边上,周长的最小值是____.
13、(4分)(2017四川省德阳市)某校欲招聘一名数学老师,甲、乙两位应试者经审查符合基本条件,参加了笔式和面试,他们的成绩如右图所示,请你按笔试成绩40%,面试成绩点60%选出综合成绩较高的应试者是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:
(1)写出a、b的值,a= b= ;
(2)求出当x>2时,y关于x的函数关系式;
(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.
15、(8分)某中学八年级组织了一次“汉字听写比赛”,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,语文教研组将八年级一班和二班的成绩整理并绘制成如下的统计图,请根损换供的信息解答下列问题.
(1)把一班比赛成统计图补充完整;
(2)填表:
表格中:a=______,b=______,c=_______.
(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:
①从平均数、众数方面来比较一班和二班的成绩;
②从B级以上(包括B级)的人数方面来比较-班和二班的成绩.
16、(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?
17、(10分)如图,为长方形的对角线,将边沿折叠,使点落在上的点处.将边沿折叠,使点落在上的点处。
求证:四边形是平行四边形;
若,求四边形的面积。
18、(10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某校对n名学生的体育成绩统计如图所示,则n=_____人.
20、(4分)如果将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.
21、(4分)经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.
22、(4分)如图,已知,与之间的距离为3, 与之间的距离为6, 分别等边三角形的三个顶点,则此三角形的边长为__________.
23、(4分)某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
二、解答题(本大题共3个小题,共30分)
24、(8分)我们可用表示以为自变量的函数,如一次函数,可表示为,且,,定义:若存在实数,使成立,则称为的不动点,例如:,令,得,那么的不动点是1.
(1)已知函数,求的不动点.
(2)函数(是常数)的图象上存在不动点吗?若存在,请求出不动点;若不存在,请说明理由;
(3)已知函数(),当时,若一次函数与二次函数的交点为,即两点的横坐标是函数的不动点,且两点关于直线对称,求的取值范围.
25、(10分)如图,在△ABC中,∠ACB=90°,D为AB边上一点,连接CD,E为CD的中点,连接BE并延长至点F,使得EF=EB,连接DF交AC于点G,连接CF,
(1)求证:四边形DBCF是平行四边形
(2)若∠A=30°,BC=4,CF=6,求CD的长
26、(12分)解方程:
(1)x2-4x=3
(2)x2-4=2(x+2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
熟记反证法的步骤,直接选择即可.
【详解】
根据反证法的步骤,第一步应假设结论的反面成立,
即假设三角形中没有一个内角小于或等于60°.
故选:D.
此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.
2、D
【解析】
如图作BH⊥AQ于H.首先证明∠BPP′=90°,再证明△PHB是等腰直角三角形,求出PH、BH、AB,再证明△ABH∽△AQB,可得AB2=AH•AQ,由此即可解决问题。
【详解】
解:如图作于.
∵是等腰直角三角形,,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,AH=AP+PH=1+2=3,
在中,,
∵,,
∴,
∴,
∴,
故选:D.
本题考查正方形的性质、旋转变换、勾股定理的逆定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考常考题型.
3、C
【解析】
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.
D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
【详解】
∵x>y,
∴x+2>y+2,
∴选项A不符合题意;
∵x>y,
∴x-2>y-2,
∴选项B不符合题意;
∵x>y,
∴−2xy,
∴,
∴选项D不符合题意,
故选C.
此题考查不等式的性质,解题关键在于掌握其性质.
4、C
【解析】
由二次根式有意义的条件可知a-1≥0,解不等式即可.
【详解】
由题意a-1≥0
解得a≥1
故选C.
本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.
5、C
【解析】
试题分析:利用:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,可知
A既不是轴对称图形,也不是中心对称图形,故不正确;
B是轴对称图形,但不是中心对称图形,故不正确;
C既是轴对称图形,也是中心对称图形,故正确;
D不是轴对称图形,但是中心对称图形,故不正确.
故选C
考点:1、中心对称图形,2、轴对称图形
6、B
【解析】
分析:首先进行通分,然后根据同分母的分式加减法计算法则即可求出答案.
详解:原式=,故选B.
点睛:本题主要考查的是分式的加减法计算,属于基础题型.学会通分是解决这个问题的关键.
7、B
【解析】
先解不等式组,根据有三个整数解,确定a的取值-1≤a<3,根据a是整数可得a符合条件的值为:-1,0,1,2,根据关于y的分式方程,得y=1-a,根据分式方程有意义的条件确定a≠-1,从而可得a的值并计算所有符合条件的和.
【详解】
解:,解得: ,
∴不等式组的解集为: ,
∵关于x的不等式组有三个整数解,
∴该不等式组的整数解为:1,2,3,
∴0≤<1,
∴-1≤a<3,
∵a是整数,
∴a=-1,0,1,2,
,
去分母,方程两边同时乘以y-2,得,
y=-2a-(y-2),
2y=-2a+2,
y=1-a,
∵y≠2,
∴a≠-1,
∴满足条件的所有整数a的和是:0+1+2=3,
故选:B.
本题考查一元一次不等式组组的解、分式方程的解,此类题容易出错,根据整数解的个数确定字母系数a的值有难度,要细心.
8、B
【解析】
利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理以及平行线的性质即可得出答案
【详解】
°,∠BAC=80°
∠BCA=180°-50°=50°
对角线AC与BD相交与点O,E是CD的中点,
EO是△DBC的中位线
EO∥BC
∠1=∠ACB=50°
故选B.
本题考查三角形内角和定理,熟练掌握三角形的性质及平行线的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、7
【解析】试题分析:将=10和g=10代入可得:S=-5+10t,则最大值为: =5,则离地面的距离为:5+2=7m.
考点:二次函数的最值.
10、1
【解析】
根据菱形的面积等于两条对角线乘积的一半即可求解.
【详解】
∵菱形的对角线长的长度分别为6、8,
∴菱形ABCD的面积S=BD•AC=×6×8=1.
故答案为:1.
本题考查了菱形的性质,熟知菱形的面积等于两条对角线乘积的一半是解决问题的关键.
11、2
【解析】
由数据1、1、6、6、x的众数为6、中位数为1知x<1且x≠1,据此可得正整数x的值.
【详解】
∵数据1、1、6、6、x的众数为6、中位数为1,
∴x<1且x≠1,
则x可取2、3、4均可,
故答案为2.
考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
12、
【解析】
根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.
【详解】
解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,
由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,
∴∠MON=∠MOP+∠NOP=2∠AOB=90°,
∴△MON为等腰直角三角形.
∴MN=,
所以△PQR周长的最小值为,
故答案为:.
此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.
13、甲.
【解析】解:甲的平均成绩为:80×40%+90×60%=86(分),乙的平均成绩为:85×40%+86×60%=85.6(分),因为甲的平均分数最高.故答案为:甲.
三、解答题(本大题共5个小题,共48分)
14、(1)5,1;(2)y=4x+2;(3)甲农户的购买量为4.2千克.
【解析】
(1)由表格即可得出购买量为函数的自变量x,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,根据点的坐标利用待定系数法即可求出函数解析式;
(3)由18.8>10,利用“购买量=钱数÷单价”即可得出甲农户的购买了,再将y=18.8代入(2)的解析式中即可求出农户的购买量.
【详解】
解:(1)由表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为:5,1;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,
将点(2.5,12)、(3,1)代入y=kx+b中,
得:,
解得:,
∴当x>2时,y关于x的函数解析式为y=4x+2.
(3)∵18.8>10,
4x+2=18.8
x=4.2
∴甲农户的购买量为:4.2(千克).
答:甲农户的购买量为4.2千克.
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
15、 (1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
【解析】
(1)根据题意和表格中的数据可以求得一班C等级的学生数,从而可以解答本题;
(2)根据表格中的数据可以求得一班的平均数和中位数,以及二班的众数;
(3)根据表格中的数据,可以从两方面比较一班和二班成绩的情况.
【详解】
解:(1)一班中C级的有25-6-12-5=2人
如图所示
(2) 一班的平均数为:a= =82.8,
一班的中位数为:b=85
二班的众数为:c=100 ;
(3)①从平均数和众数的角度来比较二班的成绩更好;
②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
故答案为(1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
本题考查条形统计图、扇形统计图、众数、中位数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、(1)平均数:260件;中位数:240件;众数:240件(2)不合理,定额为240较为合理
【解析】
分析:(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.
(2)应根据中位数和众数综合考虑.
详解:(1)平均数: ;中位数:240件;众数:240件.
(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.
点睛:本题考查了平均数、中位数和众数的知识,在求本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.
17、(1)证明过程见解析;(2)四边形的面积为30.
【解析】
(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等的四边形是平行四边形可证明AECF是平行四边形;
(2)由可得BC=8,由折叠性质可设BE=EM=x,根据,可以求出x的值,进而求出四边形的面积.
【详解】
(1)证明:∵四边形ABCD为矩形
∴AB=CD,AD∥CB,∠B=∠D=90°,∠BAC=∠DCA
由翻折性质可知:∠EAB=∠BAC,∠DCF=∠DCA
∴∠EAB=∠DCF
在△ABE和△CDF中
∴△ABE≌△CDF
∴BE=DF
∴AF=CE
又AF∥CE
∴四边形AECF是平行四边形.
(2)解:∵
∴BC=8
由翻折性质可知:BE=EM
可设BE=EM=x
且
即:
解得x=3
∴CE=BC-BE=8-3=5
∴
本题主要考查全等三角形的性质与判定,平行四边形以及直角三角形,是一个比较综合性的题目.
18、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.
【解析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.
【详解】
解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象
则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s
(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,
∴他离家的路程y=4000﹣300x,
自变量x的范围为0≤x≤,
(3)由图象可知,两人相遇是在小玲改变速度之前,
∴4000﹣300x=200x
解得x=8
∴两人相遇时间为第8分钟.
故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.
本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据统计图中的数据,可以求得n的值,本题得以解决.
【详解】
解:由统计图可得,
n=20+30+10=1(人),
故答案为:1.
本题考查折线统计图,解答本题的关键是明确题意,提取统计图中的有效信息解答.
20、
【解析】
根据一次函数图象的平移规律:上加下减,左加右减进行平移即可得出答案.
【详解】
将一次函数的图像沿轴向上平移3个单位,那么平移后所得图像的函数解析式为,即,
故答案为:.
本题主要考查一次函数图象的平移,掌握一次函数图象的平移规律是解题的关键.
21、1.
【解析】
从n边形的一个顶点可引的对角线条数应为:n-3,因为与它相邻的两个顶点和它本身的一个顶点均不能和其连接构成对角线。再用外角度数除几个角即可解答
【详解】
∵经过多边形的一个顶点有5条对角线,
∴这个多边形有5+3=8条边,
∴此正多边形的每个外角度数为360°÷8=1°,
故答案为:1.
此题考查正多边形的性质和外角,解题关键在于求出是几边形
22、
【解析】
如图,构造一线三等角,使得.根据“ASA”证明,从而,再在Rt△BEG中求出CE的长,再在Rt△BCE中即可求出BC的长.
【详解】
如图,构造一线三等角,使得.
∵a∥c,
∴∠1=∠AFD=60°,
∴∠2+∠CAF=60°.
∵a∥b,
∴∠2=∠3,
∴∠3+∠CAF=60°.
∵∠3+∠4=60°,
∴∠4=∠CAF,
∵b∥c,
∴∠4=∠5,
∴∠5=∠CAF,
又∵AC=BC,∠AFC=∠CGB,
∴,
∴CG=AF.
∵∠ACF=60°,
∴DAF=30°,
∴DF=AF,
∵AF2=AD2+DF2,
∴,
∴,
同理可求,
∴,
∴.
本题考查了平行线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,以及勾股定理,正确作出辅助线是解答本题的关键.
23、2
【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
【详解】
解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
解得, ,
则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.
本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
二、解答题(本大题共3个小题,共30分)
24、(1的不动点为0和2;(2)①时,有唯一的不动点②时,有无数个不动点③时,没有不动点;(3)的取值范围是
【解析】
(1)根据不动点的性质即可列方程求解;
(2)令,得:,根据m,n的取值进行讨论即可求解;
(3)令,则,根据一元二次方程根与系数求出A,B的中点C的坐标,再根据点在直线上,得到,得到b关于a的二次函数,再根据二次函数的性质即可求解.
【详解】
解:(1)令,则,,.
所以,的不动点为0和2.
(2)令,得:.
①若,即时,有唯一的不动点;
②若,,即时,有无数个不动点;
③若,即时,没有不动点0.
(3)令,则.
设,,则,.
的中点坐标为
,.
所以,
点在直线上,
所以,.
.
当时,.
此时,恒大于0
所以,的取值范围是:.
此题主要考查二次函数的应用,解题的关键是根据题意理解不动点的定义与性质.
25、(1)见解析(2)
【解析】
(1)根据对角线互相平分即可证明;
(2)由四边形DBCF是平行四边形,可得CF∥AB,DF∥BC,可得∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,由直角三角形的性质得到FG,CG,GD的长,由勾股定理即可求解.
【详解】
(1)∵E为CD的中点,
∴CE=DE,又EF=EB
∴四边形DBCF是平行四边形
(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC,
∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°,
在Rt△FCG中,CF=6,
∴FG=CF=3,CG=3
∵DF=BC=4,
∴DG=1,
∴在Rt△DCG中,CD=
此题主要考查平行四边形的判定与性质,解题的关键是熟知含30°的直角三角形的性质.
26、(1)x1=, x2= (2)x1=-2,x2=4
【解析】
(1)观察方程的特点:二次项系数为1,一次项系数为4,因此利用配方法解方程;
(2)观察方程的左边可以利用平方差公式分解因式,此时方程两边都含有公因式(x+2),因此利用因式分解法解方程.
【详解】
(1)解:配方得,
x2-4x+4=3+4
(x-2)2=7
解之:x-2=±
∴x1=, x2=;
(2)解:(x+2)(x-2)-2(x+2)=0
(x+2)(x-2-2)=0
∴x+2=0或x-4=0
解之:x1=-2,x2=4.
本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
题号
一
二
三
四
五
总分
得分
批阅人
购买量x(千克)
1.5
2
2.5
3
付款金额y(元)
7.5
10
12
b
平均数(分)
中位数(分)
众数(分)
一班
a
b
85
二班
84
75
c
每人加工件数
540
450
300
240
210
120
人数
1
1
2
6
3
2
相关试卷
这是一份北京市海淀区清华附中2024年九上数学开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年重庆市西南大附中数学九上开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年北京市清华附中数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。