安徽省长丰县联考2025届数学九上开学复习检测模拟试题【含答案】
展开
这是一份安徽省长丰县联考2025届数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列长度的三条线段能组成直角三角形的是( )
A.,,B.,,C.,,D.,,
2、(4分)某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
则这50名学生这一周在校的平均体育锻炼时间是
A.小时B.小时C.小时D.7小时
3、(4分)菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )
A.(3,1)B.(3,-1)C.(1,-3)D.(1,3)
4、(4分)一元二次方程的根是( )
A.B.C.,D.,
5、(4分)下列各式中正确的是( )
A.B.C.=a+bD.=-a-b
6、(4分)如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画( )
A.2个B.3个C.4个D.5个
7、(4分)有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为( )
A.1 B.2 C.3 D.4
8、(4分)若一个函数中,随的增大而增大,且,则它的图象大致是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,那么的值为__________.
10、(4分)如图,已知矩形的长和宽分别为4和3,、,,依次是矩形各边的中点,则四边形的周长等于______.
11、(4分)如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为____.
12、(4分)在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
13、(4分)有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形的边长为8,在上,且,是上的一动点,求的最小值.
15、(8分)阅读下面的解题过程,解答后面的问题:
如图,在平面直角坐标系中, , ,为线段的中点,求点的坐标;
解:分别过,做轴的平行线,过,做轴的平行线,两组平行线的交点如图所示,设,则,,
由图可知:
线段的中点的坐标为
(应用新知)
利用你阅读获得的新知解答下面的问题:
(1)已知,,则线段的中点坐标为
(2)平行四边形中,点,,的坐标分别为,,,利用中点坐标公式求点的坐标。
(3)如图,点在函数的图象上, ,在轴上,在函数的图象上 ,以,,,四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。
16、(8分).
17、(10分)(几何背景)如图1,AD为锐角△ABC的高,垂足为D.求证:AB2﹣AC2=BD2﹣CD2
(知识迁移)如图2,矩形ABCD内任意一点P,连接PA、PB、PC、PD,请写出PA、PB、PC、PD之间的数量关系,并说明理由.
(拓展应用)如图3,矩形ABCD内一点P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c满足a2﹣b2=c2,则的值为 (请直接写出结果)
18、(10分)如图,从点A(0,4)出发的一束光,经x轴反射,过点C(6,4),求这束光从点A到点C所经过的路径长度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直线经过点和点,则的值是_____.
20、(4分)关于x的方程a2x+x=1的解是__.
21、(4分)如图,已知A点的坐标为,直线与y轴交于点B,连接AB,若,则____________.
22、(4分)如图,在等腰梯形中,∥ ,,⊥,则∠=________.
23、(4分)如图,在中,对角线与相交于点,在上有一点,连接,过点作的垂线和的延长线交于点,连接,,,若,,则_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,AD是BC边上的中线,点E是AD的中点,过点A作交BE的延长线于F,BF交AC于G,连接CF.
求证:≌;
若,试判断四边形ADCF的形状,并证明你的结论;
求证:.
25、(10分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)
(1)求b,m的值
(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值
26、(12分)解分式方程:
(1);
(2)=1;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角;
【详解】
A. 2+3≠4,故该三角形不是直角三角形;
B. 3+4=5,故该三角形是直角三角形;
C.4+5≠6,故该三角形不是直角三角形;
D.5+6≠7,故该三角形不是直角三角形.
故选B
此题考查勾股定理逆定理,解题关键在于理解勾股定理逆定理的内容.
2、C
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:
小时.
故这50名学生这一周在校的平均体育锻炼时间是6.6小时.
故选C.
本题考查加权平均数,解题的关键是熟练掌握加权平均数的计算公式.
3、B
【解析】
首先连接AB交OC于点D,由四边形OACB是菱形,可得,,,易得点B的坐标是.
【详解】
连接AB交OC于点D,
四边形OACB是菱形,
,,,
点B的坐标是.
故选B.
此题考查了菱形的性质:菱形的对角线互相平分且垂直解此题注意数形结合思想的应用.
4、D
【解析】
利用因式分解法解方程.
【详解】
∵x(x+3)=0,
∴x=0,或x+3=0,
解得x=0或x=−3.
故选D.
本题主要考查解一元二次方程-因式分解法,熟悉掌握是关键.
5、D
【解析】
根据分式的性质:分子分母同时扩大或缩小相同倍数,值不变,和分式的通分即可解题.
【详解】
A. ,故A错误,
B. , 故B错误
C. a+b,这里面分子不能用平方差因式分解,
D. =-a-b,正确
故选D.
本题考查了分式的运算性质,属于简单题,熟悉概念是解题关键.
6、D
【解析】
根据平行四边形的判定方法即可解决问题.
【详解】
在直线AB的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个,
故选D.
本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.
7、C
【解析】因为72+242=252;122+162=202;92+402=412;42+62≠82;(32)2+(42)2≠(52)2,所以能组成直角三角形的个数为3个.
故选C.
本题主要考查了勾股定理的逆定理,如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,已知一个三角形三边的长,常用勾股定理的逆定理判断这个三角形是否是直角三角形.
8、B
【解析】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像.
【详解】
根据随的增大而增大,可以判断直线从左到右是上升的趋势,说明一次函数与轴的交点在轴正半轴,综合可以得出一次函数的图像为B
故选B
本题主要考查了一次函数的图像,以及和对图像的影响,掌握一次函数的图像和性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据,可设a=3k,则b=2k,代入所求的式子即可求解.
【详解】
∵,
∴设a=3k,则b=2k,
则原式=.
故答案为:.
本题考查了比例的性质,根据,正确设出未知数是本题的关键.
10、1
【解析】
直接利用矩形的性质结合勾股定理得出EF,FG,EH,HG的长即可得出答案.
【详解】
∵矩形ABCD的长和宽分别为4和3,E、F、G、H依次是矩形ABCD各边的中点,
∴AE=BE=CG=DG=1.5,AH=DH=BF=FC=2,
∴EH=EF=HG=GF=,
∴四边形EFGH的周长等于4×2.5=1
故答案为1.
此题主要考查了中点四边形以及勾股定理,正确应用勾股定理是解题关键.
11、105°
【解析】
根据∠1=30°,得∠A1MA+∠DMD1=180°-30°=150°,根据折叠的性质,得∠A1MB=AMB,∠D1MC=∠DMC,从而求解.
【详解】
由折叠,可知∠A1MB=AMB,∠D1MC=∠DMC.
因为∠1=30°,
所以∠A1MA+∠DMD1=180°-30°=150°
所以∠AMB+∠DMC= ∠A1MA+∠DMD1= ×150°=75°,
所以∠BMC的度数为180°-75°=105°.
故答案为:105°
本题考查的是矩形的折叠问题,理解折叠后的角相等是关键.
12、(-3,-2)
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
13、正确
【解析】
先去括号,再把除法变为乘法化简,化简后代入数值判断即可.
【详解】
解:,
因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,
所以把“”错抄成“”,计算结果也是正确的,
故答案为:正确.
本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.
三、解答题(本大题共5个小题,共48分)
14、的最小值是1.
【解析】
连接,,根据点与点关于对称和正方形的性质得到DN+MN的最小值即为线段BM的长.
【详解】
解:∵四边形是正方形,
∴点关于的对称点是点.
连接,,且交于点,与交于点,此时的值最小.
∵,正方形的边长为8,
∴,.
由,知.
又∵点与点关于对称,
∴且平分.∴.
∴.
∴的最小值是1.
本题考查轴对称的应用和勾股定理的基本概念.解答本题的关键是读懂题意,知道根据正方形的性质得到DN+MN的最小值即为线段BM的长.
15、 (1)线段的中点坐标是;(2)点的坐标为;(3)符合条件的点坐标为或.
【解析】
(1)直接套用中点坐标公式,即可得出中点坐标;
(2)根据AC、BD的中点重合,可得出,代入数据可得出点D的坐标;
(3)当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标.
【详解】
解:(1)AB中点坐标为,即AB的中点坐标是:(1,1);
(2)根据平行四边形的性质:对角线互相平分,可知、的中点重合,
由中点坐标公式可得:,
代入数据,得:,
解得:,,所以点的坐标为;
(3)当为该平行四边形一边时,则,对角线为、或、;
故可得:,或,.
故可得或,
,
或
代入到中,可得或.
综上,符合条件的点坐标为或.
本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,综合性较强.
16、
【解析】
先分别根据平方差公式和完全平方公式进行计算,再合并即可.
【详解】
原式=25-10-2+4-3
=10+4
此题考查平方差公式和完全平方公式,掌握运算法则是解题关键
17、【几何背景】:详见解析;【知识迁移】:详见解析;【拓展应用】:
【解析】
几何背景:由 Rt△ABD中,AD1=AB1﹣BD1,Rt△ACD中,AD1=AC1﹣CD1,则结论可证.
知识迁移:过P点作PE⊥AD,延长EP交BC于F,可证四边形ABFE,四边形DCFE是矩形.根据上面的结论求得PA、PB、PC、PD之间的数量关系.
拓展应用:根据勾股定理可列方程组,可求PD=c,PC=c即可得.
【详解】
解:几何背景:在Rt△ABD中,AD1=AB1﹣BD1
Rt△ACD中,AD1=AC1﹣CD1,
∴AB1﹣BD1=AC1﹣CD1,
∴AB1﹣AC1=BD1﹣CD1.
知识迁移:BP1﹣PC1 =BF1﹣CF1.
如 图:
过P点作PE⊥AD,延长EP交BC于F
∴四边形ABCD是矩形
∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°
又∵PE⊥AD
∴PF⊥BC
∵PE是△APD的高
∴PA1﹣PD1=AE1﹣DE1.
∵PF是△PBC的高
∴BP1﹣PC1 =BF1﹣CF1.
∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC
∴四边形ABFE,四边形DCFE是矩形
∴AE=BF,CF=DE
∴PA1﹣PD1=BP1﹣PC1.
拓展应用:∵PA1﹣PD1=BP1﹣PC1.
∴PA1﹣PB1=c1.
∴PD1﹣PC1=c1.
且PD1+PC1=c1.
∴PD=c,PC=c
∴,
故答案为.
本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.
18、10.
【解析】
首先过点B作BD⊥x轴于D,由A(0,4),C(6,4),即可得OA = CD = 4,OD = 6,由题意易证得△AOB≌△CDB,根据全等三角形即可得OB = BD = 3,AB = CB,又由勾股定理即可求得这束光从点A到点C所经过的路径的长.
【详解】
解:如图,过点C作CD⊥x轴于点D,
∵A(0,4),C(6,4),
∴OA = CD = 4,OD = 6,
由题意得,∠ABO =∠CBD,
∵∠AOB =∠CDB =90°,
∴△AOB≌△CDB,
∴OB = BD = 3,AB = CB,
在Rt△AOB中,,
∴这束光从点A到点C所经过的路径长度为AB+BC=10.
此题考查勾股定理,点的坐标,解题关键在于作辅助线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
分别把和代入中即可求出k和b的值,从而可以得出k-b的值.
【详解】
解:∵直线经过点和点,
∴将代入中得-2=k-3,解得k=1,
将代入中得b=-3,
∴k-b=1-(-3)=4,
故答案为4.
本题考查一次函数的应用,解题的关键是能根据函数图象上的点与函数的解析式的关系列出关于k和b的一元一次方程,并分别求出k和b的值.
20、.
【解析】
方程合并后,将x系数化为1,即可求出解.
【详解】
解:方程合并得:(a2+1)x=1,
解得:x=,
故答案为:.
21、2
【解析】
如图,设直线y=x+b与x轴交于点C,由直线的解析式是y=x+b,可得OB=OC=b,继而得∠BCA=45°,再根据三角形外角的性质结合∠α=75°可求得∠BAC=30°,从而可得AB=2OB=2b,根据点A的坐标可得OA的长,在Rt△BAO中,根据勾股定理即可得解.
【详解】
设直线y=x+b与x轴交于点C,如图所示,
∵直线的解析式是y=x+b,
∴OB=OC=b,则∠BCA=45°;
又∵∠α=75°=∠BCA+∠BAC=45°+∠BAC,
∴∠BAC=30°,
又∵∠BOA=90°,
∴AB=2OB=2b,
而点A的坐标是(,0),
∴OA=,
在Rt△BAO中,AB2=OB2+OA2,
即(2b)2=b2+()2,
∴b=2,
故答案为:2.
本题考查了一次函数的性质、勾股定理的应用、三角形外角的性质等,求得∠BAC=30°是解答本题的关键.
22、60°
【解析】
利用平行线及∥,证明,再证明,再利用直角三角形两锐角互余可得答案.
【详解】
解:因为:∥,所以:
因为:,所以: ,
所以;,
因为:等腰梯形,
所以:,
设: ,所以,
因为:⊥,
所以:,解得:
所以:.
故答案为:.
本题考查等腰梯形的性质,等腰三角形的性质及平行线的性质,掌握相关性质是解题关键.
23、
【解析】
根据平行四边形的对边平行,可得AD∥BC,利用两直线平行,同旁内角互补,可得∠G+∠GBC=180°,从而求出∠G=∠FBC=90°,根据“SAS”可证△AGB≌△FBC,利用全等三角形的性质,可得AG=BF=1,BC=BG,然后利用勾股定理求出FG=3,从而求出BC=BG=AD=4,即得GD=5,再利用勾股定理即可得出BD的长.
【详解】
延长BF、DA交于点点G,如图所示
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠G+∠GBC=180°
又∵BF⊥BC,
∴∠FBC=90°
在△AGB和△FBC中,
∴△AGB≌△FBC
∴AG=BF=1,BC=BG
∵
∴BC=BG=AD=3+1=4
∴GD=4+1=5
∴
此题主要考查平行四边形的性质、勾股定理以及全等三角形的判定与性质,熟练掌握,即可解题.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)四边形ADCF是菱形,理由详见解析;(3)详见解析
【解析】
由“AAS”可证≌;
由全等三角形的性质可得,可证四边形ADCF是平行四边形,由直角三角形的性质可得,可证四边形ADCF是菱形;
通过证明∽,可得,即可得结论.
【详解】
证明:,
,
在和中,
≌;
解:四边形ADCF是菱形,
理由如下:≌,
,
,
,又,
四边形ADCF是平行四边形,
,AD是BC边上的中线,
,
四边形ADCF是菱形;
∽
本题考查四边形综合题,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.
25、(1)-1;(2)或.
【解析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;
(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
【详解】
(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;
∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.
(2)当x=a时,yC=2a+1;
当x=a时,yD=4﹣a.
∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.
26、 (1) 经检验x=3是分式方程的解;(2)经检验x=﹣1是分式方程的解.
【解析】
(1)根据分式方程的原则求解即可,注意分式方程的增根.
(2)根据分式方程的原则求解即可,注意分式方程的增根.
【详解】
解:(1)去分母得:3x﹣3=2x,
解得:x=3,
经检验x=3是分式方程的解;
(2)去分母得:x2+4x+4﹣4=x2﹣4,
解得:x=﹣1,
经检验x=﹣1是分式方程的解.
本题主要考查分式方程的求解,特别注意一定不能忘记分式方程根的检验.
题号
一
二
三
四
五
总分
得分
批阅人
时间小时
5
6
7
8
人数
10
10
20
10
相关试卷
这是一份安徽省淮北市相山区2025届数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省滁州全椒县联考2024-2025学年数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。