![安徽省六安市舒城县2024年数学九上开学联考试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16252525/0-1728951029723/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省六安市舒城县2024年数学九上开学联考试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16252525/0-1728951029769/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省六安市舒城县2024年数学九上开学联考试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16252525/0-1728951029784/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省六安市舒城县2024年数学九上开学联考试题【含答案】
展开
这是一份安徽省六安市舒城县2024年数学九上开学联考试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列定理中,没有逆定理的是( )
A.两直线平行,同位角相等
B.全等三角形的对应边相等
C.全等三角形的对应角相等
D.在角的内部,到角的两边距离相等的点在角的平分线上
2、(4分)在同一平面直角坐标系中,函数与的图象可能是( )
A. B.
C. D.
3、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.7,24,25B.,4,5C.,1,D.40,50,60
4、(4分) “弘扬柳乡工匠精神,共筑乡村振兴之梦”第三届柳编文化节暨首届“襄阳人游襄州”启动仪式在浩然广场举行。为了迎接此次盛会,某工艺品厂柳编车间组织名工人赶制一批柳编工艺品,为了解每名工人的日均生产能力,随机调查了某天每个工人的生产件数,获得数据如下表:
则这一天名工人生产件数的众数和中位数分别是( )
A.件、件B.件、件C.件、件D.件、件
5、(4分)下列命题中,真命题是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
6、(4分)函数y=﹣x的图象与函数y=x+1的图象的交点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)二次根式在实数范围内有意义, 则x的取值范围是( )
A.x≥-3B.x≠3C.x≥0D.x≠-3
8、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.
10、(4分)如图,OP平分∠MON,PA⊥ON,垂足为A,Q是射线OM上的一个动点,若P、Q两点距离最小为8,则PA=____.
11、(4分)如图,在平面直角坐标系中,直线y=x﹣与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是__.
12、(4分)我们把“宽与长的比等于黄金比的矩形称为黄金矩形”,矩形是黄金矩形,且,则__________.
13、(4分)在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.
15、(8分)如图,在中,分别平分和,交于点,线段相交于点M.
(1)求证:;
(2)若,则的值是__________.
16、(8分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)D,F两点间的距离是 ;
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连结PG,当PG∥AB时,请直接写出t的值.
17、(10分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.
(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);
(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;
(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.
18、(10分)某校为了解八年级学生课外阅读情况,随机抽取20名学生平均每周用于课外阅读读的时间(单位:),过程如下:
(收集数据)
(整理数据)
(分析数据)
请根据以上提供的信息,解答下列问题:
(1)填空:______,______,______,______;
(2)如果每周用于课外读的时间不少于为达标,该校八年级现有学生200人,估计八年级达标的学生有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为 .
20、(4分)对下列现象中蕴含的数学原理阐述正确的是_____(填序号)
①如图(1),剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成一个平行四边形.其依据是两组对边分别平行的四边形是平行四边形.
②如图(2),工人师傅在做矩形门窗时,不仅测量出两组对边的长度是否相等,还要测量出两条条对角线的长度相等,以确保图形是矩形.其依据是对角线相等的四边形是矩形.
③如图(3),将两张等宽的纸条放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是一组邻边相等的平行四边形是菱形.
④如图(4),把一张长方形纸片按如图方式折一下,就可以裁出正方形.其依据是一组邻边相等的矩形是正方形.
21、(4分)化简的结果为______.
22、(4分)经过多边形一个顶点共有5条对角线,若这个多边形是正多边形,则它的每一个外角是__度.
23、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.
二、解答题(本大题共3个小题,共30分)
24、(8分) “中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节日,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习智慧学校开展了一次全校性的:“汉字听写”比赛,每位参赛学生听写个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数绘制成了以下不完整的统计图.
根据图表信息解答下列问题:
(1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数在 范围内的人数最多,补全频数分布直方图;
(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
25、(10分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=1,O为AC的中点,OE⊥OD交AB于点E.若AE=,则DO的长为_____________.
26、(12分)如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC
的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
写出各个定理的逆命题,判断是否正确即可.
【详解】
解:两直线平行,同位角相等的逆命题是同位角相等,两直线平行,正确,A有逆定理;
全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确,B有逆定理;
全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,错误,C没有逆定理;
在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,正确,D有逆定理;
故选:C.
本题考查的是命题与定理,属于基础知识点,比较简单.
2、C
【解析】
根据一次函数及二次函数的图像性质,逐一进行判断.
【详解】
解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴应在y轴左侧,故此选项错误;
B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;
C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴在y轴右侧,故此选项正确;
D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;
故选:C.
本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.
3、D
【解析】
根据勾股定理的逆定理依次计算各项后即可解答.
【详解】
选项A,∵72+242=252,∴7,24,25能构成直角三角形;
选项B,∵42+52=()2,∴,4,5能构成直角三角形;
选项C,∵12+()2=()2,∴,1,能构成直角三角形;
选项D,∵402+502≠602,∴40,50,60不能构成直角三角形.
故选D.
本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理是解决问题的关键.
4、C
【解析】
中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数据中出现次数最多的数据.
【详解】
数据3出现的次数最多,所以众数为3件;
因为共16人,
所以中位数是第8和第9人的平均数,即中位数==4件,
故选:C.
本题考查众数和中位数,解题关键在于熟练掌握计算法则.
5、C
【解析】
试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;
B、对角线互相垂直的平行四边形是菱形;故本选项错误;
C、对角线互相平分的四边形是平行四边形;故本选项正确;
D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.
故选C.
6、B
【解析】
试题分析:先把与组成方程组求得交点坐标,即可作出判断.
由解得
所以函数的图象与函数的图象的交点在第二象限
故选B.
考点:点的坐标
点评:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
7、A
【解析】
根据二次根式中被开方数大于等于0即可求解.
【详解】
解:由题意可知,,
解得,
故选:A.
此题主要考查了二次根式有意义的条件,即被开方数要大于等于0,正确把握二次根式有意义的条件是解题关键.
8、C
【解析】
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
【详解】
根据中位数的概念,可知这组数据的中位数为:21
故答案选:C
本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.
【详解】
解:如图,设NE交AD于点K,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,
∴∠MFE=∠FCB,∠FME=∠EBC
∵,
∴△BCE为等边三角形,
∴∠BEC=∠ECB=∠EBC=60°,
∵∠FEM=∠BEC,
∴∠FEM=∠MFE=∠FME=60°,
∴△FEM是等边三角形,FM=FE=EM=2,
∵EN⊥BE,
∴∠NEM=∠NEB=90°,
∴∠NKA=∠MKE=30°,
∴KM=2EM=4,NK=2AN=6,
∴在Rt△KME中,KE=,
∴NE=NK+KE=6+,
∵∠ABC=90°,
∴∠ABE=30°,
∴BN=2NE=12+,
∴BE=,
∴BC=BE=,
故答案为:
本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.
10、1.
【解析】
根据题意点Q是財线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直结上各点连接的所有绒段中,垂线段最短,所以过点P作PQ垂直OM.此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ.
【详解】
过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,
∵OP平分∠MON,PA⊥ON,PQ⊥OM,
∴PA=PQ=1,
故答案为1.
此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上
各点连接的所有段中,垂线段最短,找出满足题意的点Q的位置.
11、1.
【解析】
根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.
【详解】
∵当y=0时,解得x=1,
∴点E的坐标是(1,0),即OE=1,
∵OC=4,
∴EC=OC﹣OE=4﹣1=1,
∴点F的横坐标是4,
∴ 即CF=2,
∴△CEF的面积
故答案为:1.
本题考查的是一次函数图象上点的坐标特点,根据直线的解析式求出点E、F的坐标是解题的关键,同时也考查了矩形的性质,难度不大.
12、或
【解析】
根据黄金矩形的定义,列出方程进行解题即可
【详解】
∵矩形ABCD是黄金矩形
∴或
∴得到方程或
解得AB=2或AB=
本题考查黄金分割比的应用,本题的关键在于能够读懂黄金矩形的定义,对两边的关系进行分情况讨论
13、90分.
【解析】
试题分析:根据加权平均数的计算公式求解即可.
解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).
故答案为90分.
考点:加权平均数.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
先由四边形为矩形,得出AE=CD,∠E=∠D,再由对顶角相等,即可证明△AEF≌△CDF即可.
【详解】
∵四边形ABCD是矩形,
∴∠D=∠E,AE=CD,
又∵∠AFE=∠CFD,
在△AEF和△CDF中,
,
∴△AEF≌△CDF(AAS),
∴EF=DF.
15、(1)略;(2);
【解析】
(1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
(2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
【详解】
(1)证明:∵在平行四边形ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°,
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF,
∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
∴∠AMB=10°,
∴AE⊥BF;
(2)解:∵在平行四边形ABCD中,CD∥AB,
∴∠DEA=∠EAB,
又∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DEA=∠DAE,
∴DE=AD,同理可得,CF=BC,
又∵在平行四边形ABCD中,AD=BC,
∴DE=CF,
∴DF=CE,
∵EF=AD,
∴BC=AD=5EF,
∴DE=5EF,
∴DF=CE=4EF,
∴AB=CD=1EF,
∴BC:AB=5:1;
故答案为5:1.
本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
16、(1)25;(2)能,t=;(3),;(4)和
【解析】
(1)根据中位线的性质求解即可;
(2)能,连结,过点作于点,由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分,此时,通过证明,可得,再根据即求出t的值;
(3)分两种情况:①当点在上时;②当点在上时,根据相似的性质、线段的和差关系列出方程求解即可;
(4)(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.
【详解】
解:(1)∵D, F分别是AC, BC的中点
∴DF是△ABC的中位线
∴
(2)能.
连结,过点作于点.
由四边形为矩形,可知过的中点时,
把矩形分为面积相等的两部分.
(注:可利用全等三角形借助割补法或用中心对称等方法说明),
此时.
∵
∴
∵
∴
∴
∵
∴
∵F是BC的中点
∴
∴.
故.
(3)①当点在上时,如图1.
,,
由,得.
∴.
②当点在上时,如图2.
已知,从而,
由,,得.
解得.
(4)和.
(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.)
本题考查了三角形的动点问题,掌握中位线的性质、相似三角形的性质以及判定定理、平行线的性质以及判定定理、解一元一次方程的方法是解题的关键.
17、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)
【解析】
(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;
(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;
(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD 的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.
【详解】
(1)如图1,
在矩形ABCO中,∠B=90°
当点D落在边BC上时,BD2=AD2﹣AB2,
∵C(0,3),A(a,0)
∴AB=OC=3,AD=AO=a,
∴BD=;
(2)如图2,连结AC,
∵a=3,∴OA=OC=3,
∴矩形ABCO是正方形,∴∠BCA=45°,
设∠ECG的度数为x,
∴AE=AC,∴∠AEC=∠ACE=45°+x,
①当CG=EG时,x=45°+x,
解得x=0,不合题意,舍去;
②当CE=GE时,如图2,
∠ECG=∠EGC=x
∵∠ECG+∠EGC+∠CEG=180°,
∴x+x+(45°+x)=180°,解得x=45°,
∴∠AEC=∠ACE=90°,不合题意,舍去;
③当CE=CG时,∠CEG=∠CGE=45°+x,
∵∠ECG+∠EGC+∠CEG=180°,
∴x+(45°+x)+(45°+x)=180°,解得x=30°,
∴∠AEC=∠ACE=75°,∠CAE=30°
如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,
∴EH=AE=AC,BQ=AC,
∴EH=BQ,EH∥BQ且∠EHQ=90°
∴四边形EHQB是矩形
∴BE∥AC,
设直线BE的解析式为y=﹣x+b,
∵点B(3,3)在直线上,则b=6,
∴直线BE的解析式为y=﹣x+6;
(3)①∵点P为矩形ABCO的对称中心,
∴,
∵B(a,3),
∴PB的中点坐标为:,
∴直线PB的解析式为,
∵当P,B关于AD对称,
∴AD⊥PB,
∴直线AD的解析式为:,
∵直线AD过点,∴,
解得:a=±3,
∵a≥3,
∴a=3;
②存在M,N;
理由:∵a=3,
∴直线AD 的解析式为y=﹣x+9,
∴∴∠DAO=60°,
∴∠DAB=30°,
连接AE,
∵AD=OA=3,DE=OC=3,
∴∠EAD=30°,
∴A,B,E三点共线,
∴AE=2DE=6,
∴,
设M(m,0),N(0,n),
∵四边形EFMN是平行四边形,
∴,
解得:,
∴M(,0),N(0,).
本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.
18、(1)a=5,b=4,m=81,n=8;(2)120人.
【解析】
根据中位数、众数的定义可以填表格,利用样本和总体之间的比例关系可以估计或计算得到(1)(2)结果.
【详解】
(1)由统计表收集数据可知,,,;
(2)(人).
答:估计达标的学生有120人.
此题考查中位数、众数的定义,用样本估计总体,解题关键在于看懂图中数据
一、填空题(本大题共5个小题,每小题4分,共20分)
19、AB=2BC.
【解析】
过A作AE⊥BC于E、作AF⊥CD于F,
∵甲纸条的宽度是乙纸条宽的2倍,
∴AE=2AF,
∵纸条的两边互相平行,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD=BC,
∵∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
∴,即.
故答案为AB=2BC.
考点:相似三角形的判定与性质.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
20、①③④
【解析】
①平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;
②矩形的判定定理:对角线相等的平行四边形是矩形;
③首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则重叠部分为菱形;
④根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.
【详解】
解:①由题意得:AB∥CD,AD∥BC,
∵两组对边分别平行,
∴四边形ABCD是平行四边形,故正确;
②∵两组对边的长度相等,
∴四边形是平行四边形,
∵对角线相等,
∴此平行四边形是矩形,故错误;
③∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
∴AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);
过点D分别作AB,BC边上的高为DE,DF.如图所示:
则DE=DF(两纸条相同,纸条宽度相同);
∵平行四边形ABCD的面积=AB×DE=BC×DF,
∴AB=BC.
∴平行四边形ABCD为菱形(一组邻边相等的平行四边形是菱形),故正确;
④根据折叠原理,对折后可得:
所得的四边形有三个直角,且一组邻边相等,
所以可以裁出正方形纸片,故正确.
故答案为①③④.
本题考查了平行四边形的判定、矩形的判定、菱形的判定以及正方形的判定,熟练掌握判定定理是解题的关键.
21、
【解析】
根据二次根式的性质进行化简.由即可得出答案.
【详解】
解:,
故答案为:.
本题考查的是二次根式的化简,掌握二次根式的性质: 是解题的关键.
22、1.
【解析】
从n边形的一个顶点可引的对角线条数应为:n-3,因为与它相邻的两个顶点和它本身的一个顶点均不能和其连接构成对角线。再用外角度数除几个角即可解答
【详解】
∵经过多边形的一个顶点有5条对角线,
∴这个多边形有5+3=8条边,
∴此正多边形的每个外角度数为360°÷8=1°,
故答案为:1.
此题考查正多边形的性质和外角,解题关键在于求出是几边形
23、(3,0)
【解析】
试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)
考点:关于y轴对称的点的坐标.
二、解答题(本大题共3个小题,共30分)
24、(1)50; ;补全频数分布直方图见解析;(2)23
【解析】
(1)根据一组的人数是10,所占的百分比是20%,即可求出总人数;根据扇形统计图中每个扇形的圆心角的大小解判断哪个范围的人数最多;根据百分比的意义即可求得一组的人数,进而求得组的人数,从而补全直方图;
(2)利用加权平均数公式即可求解.
【详解】
(1)抽取的学生人数是10÷20%=50(人);
听写正确的汉字个数范围内的人数最多;
一组的人数是:50×30%=15(人)
一组的人数是:50﹣5﹣15﹣10=20(人)
补全频数分布直方图如下:
(2)(个)
答:被调查学生听写正确的汉字个数的平均数是23个.
本题为考查统计的综合题,考点涉及扇形统计图、样本估计总体、频数(率)分布直方图、加权平均数等知识点,难度不大,熟练掌握统计的相关知识点是解答本题的关键.
25、
【解析】
求出△DAO≌△EBO,推出OD=OE,AD=BE,求出AD=BE=,由勾股定理得出DE2=DO2+OE2=AD2+AE2,求出即可.
【详解】
连结DE,如图,
∵∠ABC=90°,O为AC的中点,
∴∠CAB=∠ACB=45°,∠ABO=45°,AO=BO=CO,∠AOB=90°,
∵OE⊥OD,
∴∠DOE=∠AOB=90°,
∴∠DOA=∠BOE=90°-∠AOE,
∵AD∥BC,
∴∠DAB=180°-∠ABC=90°,
∴∠DAO=90°-45°=45°,
∴∠DAO=∠OBE,
在△DAO和△EBO中
∴△DAO≌△EBO(ASA),
∴OD=OE,AD=BE,
∵AB=1,AE=,
∴AD=BE=1-=,
在Rt△DAE和Rt△DOE中,由勾股定理得:DE2=DO2+OE2=AD2+AE2,
∴2DO2=()2+()2,
DO=,
故答案为:.
本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,解此题的关键是求出OD=OE,AD=BE,题目比较好,难度适中.
26、27cm.
【解析】
已知DE是AC的垂直平分线,根据线段垂直平分线的性质可得DA=DC,AC=2AE=10cm,再由AB+BD+AD=AB+BD+DC=AB+BC=17cm,由此即可求得△ABC的周长.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,AC=2AE=10cm,
∵△ABD的周长为17cm,
∴AB+BD+AD=AB+BD+DC=AB+BC=17cm,
∴△ABC的周长=AB+BC+AC=27cm.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并求出AB+BC=17是解题的关键.
题号
一
二
三
四
五
总分
得分
30
60
81
50
40
110
130
146
90
100
60
81
120
140
70
81
10
20
100
81
课外阅读时间
等级
人数
3
8
平均数
中位数
众数
80
听写正确的汉字个数
组中值
相关试卷
这是一份安徽省舒城县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省舒城县2024年九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省六安市霍邱县2024-2025学年九上数学开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。