安徽省池州市名校2024-2025学年数学九年级第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是( )
A.B.C.D.
2、(4分)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,∠AED的度数是( )
A.120°B.115°C.105°D.100°
3、(4分)如图,菱形ABCD的对角线AC、BD的长分别是3cm、4cm,AE⊥BC于点E,则AE的长是( )
A. cmB.cmC. cmD.2 cm
4、(4分)宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为( )
A.1.2×10﹣7米B.1.2×107米C.1.2×10﹣6米D.1.2×106米
5、(4分)若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )
A.-2 B.2 C.-50 D.50
6、(4分)下列说法不一定成立的是( )
A.若,则
B.若,则
C.若,则
D.若,则
7、(4分)一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )
A.平均数B.众数C.中位数D.方差
8、(4分)下列各组数中,能构成直角三角形的是( )
A.1,1,B.4,5,6C.6,8,11D.5,12,15
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)不等式5﹣2x>﹣3的解集是_____.
10、(4分)反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________.
11、(4分)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.
12、(4分)若,是一元二次方程的两个根,则______.
13、(4分)如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形中,,于点,.求证.
15、(8分)解方程:
(1)
(2)
16、(8分)已知命题“若 a>b,则 a2>b2”.
(1)此命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出一个 反例.
(2)写出此命题的逆命题,并判断此逆命题的真假;若是真命题,请给予证明;若是假 命题,请举出一个反例.
17、(10分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?
18、(10分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)D,F两点间的距离是 ;
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连结PG,当PG∥AB时,请直接写出t的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:_________.
20、(4分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为___cm.
21、(4分)计算:-=________.
22、(4分)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.
23、(4分)如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,一次函数的图像经过点A(-1,0),并与反比例函数()的图像交于B(m,4)
(1)求的值;
(2)以AB为一边,在AB的左侧作正方形,求C点坐标;
(3)将正方形沿着轴的正方向,向右平移n个单位长度,得到正方形,线段的中点为点,若点和点同时落在反比例函数的图像上,求n的值.
25、(10分)如图,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,同时点E从点B出发沿BA方向以cm/s的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是t(0<1≤10)s.过点E作EF⊥BC于点F,连接DE,DE.
(1)用含t的式子填空:BE=________ cm ,CD=________ cm.
(2)试说明,无论t为何值,四边形ADEF都是平行四边形;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
26、(12分)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,AB=16,BC=12,CD=1.动点M从点C出发,沿射线CD方向以每秒2个单位长的速度运动;动点N从B出发,在线段BA上,以每秒1个单位长的速度向点A运动,点M、N分别从C、B同时出发,当点N运动到点A时,点M随之停止运动.设运动时间为t(秒).
(1)设△AMN的面积为S,求S与t之间的函数关系式,并确定t的取值范围;
(2)当t为何值时,以A、M、N三点为顶点的三角形是等腰三角形?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:A、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故A正确;
B、由二次函数的图象可知a>0,﹣>0,可得b<0,此时直线y=ax+b经过一,三,四象限,故B错误;
C、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故C错误;
D、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、三象限,故D错误;
正确的只有A.
故选A.
考点:1.二次函数的图象;2.一次函数的图象.
2、A
【解析】
如解图所示,根据多边形的外角和即可求出∠5,然后根据平角的定义即可求出结论.
【详解】
解:∵∠1=∠2=∠3=∠4=75°,
∴∠5=360°﹣75°×4=360°﹣300°=60°,
∴∠AED=180°﹣∠5=180°﹣60°=120°.
故选:A.
此题考查的是多边形的外角和平角的定义,掌握多边形的外角和都等于360°是解决此题的关键.
3、B
【解析】
根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.
【详解】
解:∵四边形ABCD是菱形,
∴CO=AC=cm,BO=BD=2cm,AO⊥BO,
∴BC=cm,
∴S菱形ABCD=×3×4=6cm2,
∵S菱形ABCD=BC×AE,
∴BC×AE=6,
∴AE=cm.
故选:B.
此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.
4、A
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
解:0.00000012米=1.2×10﹣7米,故答案为A。
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
5、A
【解析】
试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.
当a+b=5时,a1b+ab1=ab(a+b)=5ab=-10,解得:ab=-1.
考点:因式分解的应用.
6、C
【解析】
A.在不等式的两边同时加上c,不等式仍成立,即,故本选项错误;
B.在不等式的两边同时减去c,不等式仍成立,即,故本选项错误;
C.当c=0时,若,则不等式不成立,故本选项正确;
D.在不等式的两边同时除以不为0的,该不等式仍成立,即,故本选项错误.
故选C.
7、D
【解析】
依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.
【详解】
原数据的3,4,4,5的平均数为,
原数据的3,4,4,5的中位数为4,
原数据的3,4,4,5的众数为4,
原数据的3,4,4,5的方差为×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;
新数据3,4,4,4,5的平均数为,
新数据3,4,4,4,5的中位数为4,
新数据3,4,4,4,5的众数为4,
新数据3,4,4,4,5的方差为×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;
∴添加一个数据4,方差发生变化,
故选D.
本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.
8、A
【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两短边的平方和是否等于最长边的平方即可.
【详解】
解:A.12+12=()2,能构成直角三角形,故符合题意;
B.52+42≠62,不能构成直角三角形,故不符合题意;
C.62+82≠112,不能构成直角三角形,故不符合题意;
D.122+52≠152,不能构成直角三角形,故不符合题意.
故选A.
本题考查了勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<1
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
解:﹣2x>﹣3﹣5,
﹣2x>﹣8,
x<1,
故答案为x<1.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
10、没有实数根
【解析】
分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出1xy>11,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.
详解:∵反比例函数y=的图象位于一、三象限,
∴a+4>0,
∴a>-4,
∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于11,
∴1xy>11,
即a+4>6,a>1
∴a>1.
∴△=(-1)1-4(a-1)×=1-a<0,
∴关于x的方程(a-1)x1-x+=0没有实数根.
故答案为:没有实数根.
点睛:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.
11、1
【解析】
由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.
【详解】
解:连结,与交于点,
四边形是平行四边形,,
四边形是菱形,
,,.
,
在中,,
.
故答案为:1.
本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.
12、3
【解析】
利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.
【详解】
解:∵,是一元二次方程的两个根,∴,
∴.
故答案为:3.
本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.
13、
【解析】
过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.
【详解】
解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:
∵四边形OEFG是正方形,
∴OE=OG,∠EOG =90°,
∴∠GOH+∠EOI=90°,
又∵∠OEI +∠EOI=90°,
∴∠OEI =∠GOH,
在△EOI和△OGH中,,
∴△EOI≌△OGH(AAS),
∴OH=EI=3,GH=OI=2,
∵点G在第二象限,
∴点G的坐标为(-3,2).
故答案为(-3,2).
本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;
【详解】
证明:连接.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∴.
本题考查了勾股定理的应用,正确作出辅助线是解答本题的关键. 在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.
15、(1)原方程无解;(1)x=6或x=-1.
【解析】
【分析】(1)先去分母,化为整式方程,解整式方程后进行检验即可得答案;
(1)利用因式分解法进行求解即可得.
【详解】(1)两边同乘(x-1),得
1=x-1-3(x-1),
解得:x=1,
检验:x=1时,x-1=0,
x=1是原方程的增根,原方程无解;
(1)因式分解,得(x-6)(x+1)=0 ,
x-6=0或x+1=0,
x=6或x=-1.
【点睛】本题考查了解分式方程以及解一元二次方程,熟练掌握分式方程的解法、注意事项以及一元二次方程的解法是解题的关键.
16、(1)假命题,举例如a=1,b=-1;反例不唯一.(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1;反例不唯一.
【解析】
(1)判断是否为真命题,需要分析由题设是否能推出结论,本题可从a、b的正负性来考虑反例,如a=1,b=-1来进行检验判断;
(2)先写出逆命题,再按照(1)的思路进行判断.
【详解】
解:(1)假命题,举例如a=1,b=-1,满足a>b,但很明显,,不满足a2>b2,所以原命题是假命题;当然反例不唯一.
(2)逆命题为“若a2>b2,则a>b”,该命题也是假命题,举例如a=-2,b=1,满足a2>b2,但不满足a>b;反例也不唯一.
本题主要考查命题和逆命题的知识,判断命题的真假关键是熟知课本中有关的定义和性质定理等,另外,正确举出反例是判断假命题的常用方法.
17、A型机器人每小时搬运化工原料100千克,则B型机器人每小时搬运80千克.
【解析】
设A型机器人每小时搬运x千克化工原料,列出方程求解即可.
【详解】
解:设A型机器人每小时搬运x千克化工原料,则
解得.
经检验是原方程的解,则x-20=80
所以A型每小时搬100千克,B型每小时搬80千克.
18、(1)25;(2)能,t=;(3),;(4)和
【解析】
(1)根据中位线的性质求解即可;
(2)能,连结,过点作于点,由四边形为矩形,可知过的中点时,把矩形分为面积相等的两部分,此时,通过证明,可得,再根据即求出t的值;
(3)分两种情况:①当点在上时;②当点在上时,根据相似的性质、线段的和差关系列出方程求解即可;
(4)(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.
【详解】
解:(1)∵D, F分别是AC, BC的中点
∴DF是△ABC的中位线
∴
(2)能.
连结,过点作于点.
由四边形为矩形,可知过的中点时,
把矩形分为面积相等的两部分.
(注:可利用全等三角形借助割补法或用中心对称等方法说明),
此时.
∵
∴
∵
∴
∴
∵
∴
∵F是BC的中点
∴
∴.
故.
(3)①当点在上时,如图1.
,,
由,得.
∴.
②当点在上时,如图2.
已知,从而,
由,,得.
解得.
(4)和.
(注:判断可分为以下几种情形:当时,点下行,点上行,可知其中存在的时刻;此后,点继续上行到点时,,而点却在下行到点再沿上行,发现点在上运动时不存在;当时,点,均在上,也不存在;由于点比点先到达点并继续沿下行,所以在中存在的时刻;当时,点,均在上,不存在.)
本题考查了三角形的动点问题,掌握中位线的性质、相似三角形的性质以及判定定理、平行线的性质以及判定定理、解一元一次方程的方法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先计算二次根式的乘法,然后进行化简,最后合并即可.
【详解】
原式.
故答案为:.
本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.
20、6
【解析】
∵l垂直平分BC,∴DB=DC.
∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm
21、1
【解析】
根据算术平方根和立方根定义,分别求出各项的值,再相加即可.
【详解】
解:因为,所以.
故答案为1.
本题考核知识点:算术平方根和立方根. 解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.
22、121
【解析】
设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.
【详解】
设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1(4x+37)-6(x-1)<3,去括号得:1-2x+43<3,移项得:-42-2x<-40,解得:20
23、2
【解析】
先证△ADP≌△BAQ,得到AP=BQ,然后用t表示出AP与BQ,列出方程解出t即可.
【详解】
因为AQ⊥PD,所以∠BAQ+∠APD=90°
又因为正方形性质可到∠APD+∠ADP=90°,∠PAD=∠B=90°,AB=AD,
所以得到∠BAQ=∠ADP
又因为∠PAD=∠B=90°,AB=AD
所以△ADP≌△BAQ,得到AP=BQ
AP=2t,QC=t,BC=8-t
所以2t=8-2t,解得t=2s
故填2
本题考查全等三角形的性质与判定,解题关键在于证出三角形全等,得到对应边相等列出方程.
二、解答题(本大题共3个小题,共30分)
24、(1)k1=4;(2)C点坐标为(-3,6);(3)n=.
【解析】
(1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
【详解】
(1)∵一次函数的图像经过点A(-1,0),
∴-2+b=0,
解得:b=2,
∵点B(m,4)在一次函数y=2x+2上,
∴4=2m+2,
解得:m=1,
∵B(1,4)在反比例函数图象上,
∴k1=4.
(2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
∵A(-1,0),B(1,4),
∴AF=2,BF=4,
∴∠GCB+∠CBG=90°,
∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠ABF+∠CBG=90°,
∴∠GCB=∠ABF,
又∵BC=AB,∠AFB=∠CGB=90°,
∴△CBG≌△BAF,
∴BG=AF=2,CG=BF=4,
∴GF=6,
∵在AB的左侧作正方形ABCD,
∴C点坐标为(-3,6).
(3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
∵线段A1B1的中点为点E,
∴E(n,2),
∵点和点E同时落在反比例函数的图像上,
∴k2=2n=6(-3+n)
解得:n=.
本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.
25、(1)(1)t ,10-t;(2)见解析;(3)满足条件的t的值为5s或s,理由见解析
【解析】
(1) 点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动 ,由路程=时间×速度,得AD=t, CD=10-t,; 点E从点B出发沿BA方向以 cm/s的速度向点A匀速运动,所以BE=t;
(2)因为 △ABC 是等腰直角三角形,得∠B=45°,结合BE= t,得EF=t, 又因为∠EFB和∠C都是直角相等, 得 AD∥EF, 根据一组对边平行且相等的四边形是平行四边形,证得四边形ADFE是平行四边形;
(3) ①当∠DEF=90°时,因为DF平分对角,四边形EFCD是正方形, 这时 AD=DE=CD =5,求得t=5;②当∠EDF=90°时, 由DF∥AE,两直线平行,内错角相等,得∠AED=∠EDF=90°,结合∠A=45°,AD= AE , 据此列式求得t值即可; ③当∠EFD=90°,点D、E、F在一条直线上,△DFE不存在.
【详解】
(1)由题意可得BE=tcm,CD=AC-AD=(10-t)cm,
故填:t ,10-t;
(2)解:如图2中
∵CA=CB,∠C=90°
∴∠A=∠B=45°,
∵EF⊥BC,
∴∠EFB=90°
∴∠FEB=∠B=45°
∴EF=BF
∵BE=t,
∴EF=BF=t
∴AD=EF
∵∠EFB=∠C=90°
∴AD∥EF,
∴四边形ADFE是平行四边形
(3)解:①如图3-1中,当∠DEF=90°时,四边形EFCD是正方形,此时AD=DE=CD,
∴t=10-t,∴t=5
②如图3-2中,当∠EDF=90°时,
∵DF∥AC,
∴∠AED=∠EDF=90°,
∵∠A=45°
∴AD=AE,
∴t= (10- t),
解得t=
③当∠EFD=90°,△DFE不存在
综上所述,满足条件的t的值为5s或s.
本题属于四边形综合题,考查了等腰直角三角形的性质、平行四边形的判定与性质、直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
26、(1);(2)t=3.5或t=
【解析】
(1)过点M作MH⊥AB,垂足为H,用含的代数式表示的长,再利用三角形面积公式即可得到答案.(2)先用含的代数式分别表示的长,进行分类讨论,利用腰相等建立方程求解.
【详解】
(1)如图,过点M作MH⊥AB,垂足为H,则四边形BCMH为矩形.
∴MH=BC=2.
∵AN=16-t,
∴;
(2)由(1)可知:BH=CM=2t,BN=t,.
以A、M、N三点为顶点的三角形是等腰三角形,可以分三种情况:
①若MN=AN.因为:
在Rt△MNH中,,所以:MN2=t2+22,
由MN2=AN2得t2+22=(16-t)2,
解得t=.
②若AM=AN.
在Rt△MNH中,AM2=(16-2t)2+22.
由AM2=AN2得:,
即3t2-32t+144=4.
由于△=,
∴3t2-32t+144=4无解,
∴.
③若MA=MN.
由MA2=MN2,得t2+22=(16-2t)2+22
整理,得3t2-64t+256=4.
解得,t2=16(舍去)
综合上面的讨论可知:当t=秒或t=秒时,以A、M、N三点为顶点的三角形是等腰三角形.
本题考察的是梯形通过作辅助线化成直角三角形的问题与等腰三角形存在性问题,掌握分类讨论是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
安徽省滁州市名校2024-2025学年数学九年级第一学期开学考试模拟试题【含答案】: 这是一份安徽省滁州市名校2024-2025学年数学九年级第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省池州市2024年九年级数学第一学期开学监测试题【含答案】: 这是一份安徽省池州市2024年九年级数学第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省十校联考九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024-2025学年安徽省十校联考九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。