搜索
    上传资料 赚现金
    英语朗读宝

    2025届浙江乐清市育英寄宿学校九上数学开学学业质量监测模拟试题【含答案】

    2025届浙江乐清市育英寄宿学校九上数学开学学业质量监测模拟试题【含答案】第1页
    2025届浙江乐清市育英寄宿学校九上数学开学学业质量监测模拟试题【含答案】第2页
    2025届浙江乐清市育英寄宿学校九上数学开学学业质量监测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届浙江乐清市育英寄宿学校九上数学开学学业质量监测模拟试题【含答案】

    展开

    这是一份2025届浙江乐清市育英寄宿学校九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )
    A.B.C.D.
    2、(4分)化简结果正确的是( )
    A.xB.1C.D.
    3、(4分)如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是( )
    A.4B.6C.8D.10
    4、(4分)已知一次函数不过第二象限,则b试问取值范围是( )
    A.b0C.b≤0D.b≥0
    5、(4分)根据如图所示的程序计算函数y的值,若输入的x值是﹣3和2时,输出的y值相等,则b等于( )
    A.5B.﹣5C.7D.3和4
    6、(4分)如图,将的一边延长至点,若,则等于( )
    A.B.C.D.
    7、(4分)若二次根式有意义,则x的取值范围是( )
    A.B.C.D.
    8、(4分)下列命题是真命题的是( )
    A.四边都是相等的四边形是矩形B.菱形的对角线相等
    C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)
    10、(4分)观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.
    11、(4分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是_____分.
    12、(4分)一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________ 尾.
    13、(4分)如图,在四边形中,交于E,若,则的长是_____________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30﹣40含起点值30,不含终点值40),得到其频数及频率如表:
    (1)表中a、b、c、d分别为:a= ; b= ; c= ; d=
    (2)补全频数分布直方图;
    (3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
    15、(8分)一次函数y1=kx+b和y2=﹣4x+a的图象如图所示,且A(0,4),C(﹣2,0).
    (1)由图可知,不等式kx+b>0的解集是 ;
    (2)若不等式kx+b>﹣4x+a的解集是x>1.
    ①求点B的坐标;
    ②求a的值.
    16、(8分)如图,在平行四边形中,连接,,且,是的中点,是延长线上一点,且.求证:.
    17、(10分)在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数和的图象,分别与x轴交于点A、B,两直线交于点C. 已知点,,观察图象并回答下列问题:
    (1)关于x的方程的解是______;关于x的不等式的解集是______;
    (2)直接写出关于x的不等式组的解集;
    (3)若点,求关于x的不等式的解集和△ABC的面积.
    18、(10分)解下列方程:
    (1)
    (2)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)函数为任意实数)的图象必经过定点,则该点坐标为____.
    20、(4分)计算:__.
    21、(4分)已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D为顶点的四边形是平行四边形,则D点的坐标为___________________.
    22、(4分)在中,,,点在上,.若点是边上异于点的另一个点,且,则的值为______.
    23、(4分)在一次函数y=(2﹣m)x+1中,y随x的增大而减小,则m的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)分解因式:
    (1)x(x+y)(x-y)-x(x+y)2
    (2)(x-1)2+2(1-x)•y+y2
    25、(10分)如图,中,,,的垂直平分线交于点,交于点,,于点,求的长.
    26、(12分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:


    因为>,所以>,则有kx+b的解集:
    ∵AB=3,
    ∴S△ABC=AB•yC=×3×3=.
    此题主要考查了一元一次方程的解、一次函数与不等式,一次函数与不等式组,三角形面积,正确利用数形结合解题是解题关键.
    18、 (1) ;(2)无解
    【解析】
    (1) 移项,再因式分解求解即可.
    (2) 方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)


    (2)

    经检验,是原方程的增根,
    ∴原方程无解
    本题主要考查了解方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (1,2)
    【解析】
    先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.
    【详解】
    解:函数可化为,
    当,即时,,
    该定点坐标为.
    故答案为:.
    本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.
    20、-
    【解析】
    直接利用二次根式的性质分别计算得出答案.
    【详解】
    解:原式

    故答案为:.
    此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
    21、 (5,2),(-3,6),(1,-2) .
    【解析】
    D的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.
    【详解】
    解:根据平移性质可以得到AB对应DC,所以,由B,C的坐标关系可以推出A,D的坐标关系,即D(-1-2,2+4),所以D点的坐标为(-3,6);
    同理,当AB与CD对应时,D点的坐标为(5,2);
    当AC与BD对应时,D点的坐标为(1,-2)
    故答案为:(5,2),(-3,6),(1,-2).
    本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.
    22、24或21或
    【解析】
    情况1:连接EP交AC于点H,依据先证明是菱形,再根据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据EP=2EH=2sin10°•EC求解即可.
    情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.此时,=24
    情况2:如图2:过点P′作P′F⊥BC.通过解直角三角形可以解得FC ,EF,再在Rt△P′EF中,利用勾股定理可以求得.
    【详解】
    解:情况1:如图所示:连接EP交AC于点H.
    ∵在中,
    ∴是菱形
    ∵菱形ABCD中,∠B=10°,
    ∴∠BCD=120°,∠ECH=∠PCH=10°.
    在△ECH和△PCH中

    ∴△ECH≌△PCH.
    ∴∠EHC=∠PHC=90°,EH=PH.
    ∴EP=2EH=2sin10°•EC=2××2=1.
    ∴=21
    情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.
    ∴=24
    情况2:如图2:过点P′作P′F⊥BC.
    ∵P′C=2,BC=4,∠B=10°,
    ∴P′C⊥AB.
    ∴∠BCP′=20°.
    ∴FC=×2=2,P′F=,EF=2-2.
    ∴=,
    故答案为:24或21或.
    本题主要考查的是菱形的性质,全等三角形的判定和性质,以及解直角三角形和勾股定理得结合,是综合性题目,难度较大.
    23、m>1.
    【解析】
    根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.
    【详解】
    ∵一次函数y=(1﹣m)x+1的函数值y随x的增大而减小,∴1﹣m<0,∴m>1.
    故答案为m>1.
    本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小.
    二、解答题(本大题共3个小题,共30分)
    24、(1)-2xy(x+y);(2)(x-1-y)2
    【解析】
    (1)提公因式x(x+y),合并即可;
    (2)利用完全平方式进行分解.
    【详解】
    (1)原式=x(x+y)[(x-y)-(x+y)]
    =-2xy(x+y)
    (2)原式=(x-1)2-2(x-1)y+y2
    =(x-1-y)2
    本题考查的知识点是提取公因式法因式分解和完全平方式,解题关键是求出多项式里各项的公因式,提公因式.
    25、.
    【解析】
    连接 ,根据垂直平分线的性质得到,由 得到,再根据勾股定理得到答案.
    【详解】
    连接
    ∵垂直平分,∴

    ∵,∴

    ∴,
    设,则
    ∴,即,
    在中,∵,∴
    设,则,∴
    ∴,即
    本题考查垂直平分线的性质、勾股定理,解题的关键是掌握垂直平分线的性质、勾股定理.
    26、方法见解析.
    【解析】
    【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.
    【详解】 ,

    ∵,
    ∴,
    ∵, ,
    ∴ .
    【点睛】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.
    题号





    总分
    得分
    数据段
    频数
    频率
    30﹣40
    10
    0.05
    40﹣50
    36
    c
    50﹣60
    a
    0.39
    60﹣70
    b
    d
    70﹣80
    20
    0.10
    总计
    200
    1

    相关试卷

    2024年浙江省乐清市育英寄宿学校数学九上开学调研试题【含答案】:

    这是一份2024年浙江省乐清市育英寄宿学校数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】:

    这是一份2024年浙江东阳数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省乐清市育英寄宿学校2023-2024学年九上数学期末学业质量监测试题含答案:

    这是一份浙江省乐清市育英寄宿学校2023-2024学年九上数学期末学业质量监测试题含答案,共9页。试卷主要包含了若均为锐角,且,则.,如图,点A是反比例函数y=,若,且,则的值是,方程的根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map