开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届四川省巴中学市巴中学九年级数学第一学期开学经典试题【含答案】

    2025届四川省巴中学市巴中学九年级数学第一学期开学经典试题【含答案】第1页
    2025届四川省巴中学市巴中学九年级数学第一学期开学经典试题【含答案】第2页
    2025届四川省巴中学市巴中学九年级数学第一学期开学经典试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届四川省巴中学市巴中学九年级数学第一学期开学经典试题【含答案】

    展开

    这是一份2025届四川省巴中学市巴中学九年级数学第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)对于一次函数y=﹣2x+4,下列结论错误的是( )
    A.函数的图象不经过第三象限
    B.函数的图象与x轴的交点坐标是(0,4)
    C.函数的图象向下平移4个单位长度得y=﹣2x的图象
    D.函数值随自变量的增大而减小
    2、(4分)下列二次根式中最简二次根式的个数有( )
    ①;②(a>0);③;④.
    A.1个B.2个C.3个D.4个
    3、(4分)下列二次根式是最简二次根式的是( )
    A. B. C. D.
    4、(4分)9的算术平方根是( )
    A.﹣3B.±3C.3D.
    5、(4分)菱形的面积为2,其对角线分别为x、y,则y与x的图象大致().
    A.B.
    C.D.
    6、(4分)下列4个命题:
    ①对角线相等且互相平分的四边形是正方形;
    ②有三个角是直角的四边形是矩形;
    ③对角线互相垂直的平行四边形是菱形;
    ④一组对边平行,另一组对边相等的四边形是平行四边形
    其中正确的是( )
    A.②③B.②C.①②④D.③④
    7、(4分)如果点在第四象限,那么m的取值范围是( ).
    A.B.C.D.
    8、(4分)下列四个数中,是无理数的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在等腰直角中,,,D是AB上一个动点,以DC为斜边作等腰直角,使点E和A位于CD两侧。点D从点A到点B的运动过程中,周长的最小值是________.
    10、(4分)如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.
    11、(4分)如图,直线与直线交于点,则不等式的解集是__________.
    12、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
    13、(4分)如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)求证:三角形的一条中位线与第三边上的中线互相平分.
    要求:(1)根据给出的和它的一条中位线,在给出的图形上,请用尺规作出边上的中线,交于点.不写作法,保留痕迹;
    (2)据此写出已知,求证和证明过程.
    15、(8分)已知.将他们组合成(A﹣B)÷C或A﹣B÷C的形式,请你从中任选一种进行计算,先化简,再求值,其中x=1.
    16、(8分)如图①,在正方形中,点,分别在、上,且.
    (1)试探索线段、的关系,写出你的结论并说明理由;
    (2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.
    17、(10分)某校在一次广播操比赛中,甲、乙、丙各班得分如下表:
    (1)根据三项得分的平均分,从高到低确定三个班级排名顺序.
    (2)该校规定:服装统一、动作整齐、动作准确三项得分都不得低于80分,并按,,的比例计入总分根据规定,请你通过计算说明哪一组获得冠军.
    18、(10分)计算:
    (1);
    (2).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.
    20、(4分)计算:(π﹣3.14)0+3﹣1=_____.
    21、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
    22、(4分)一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).
    23、(4分)如图,一次函数y=ax+b的图象经过A(0,1)和B(2,0)两点,则关于x的不等式ax+b<1的解集是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为增强学生的身体素质,某校长年坚持全员体育锻炼,并定期进行体能测试,下图是将某班学生的立定跳远成绩(精确到0.01米)进行整理后,画出的频数分布直方图的一部分,已知从左到右4个小组的频率分别是0.05,0.15,0.30,0.35,第5小组的频数9.
    (1)请将频数分布直方图补充完整;
    (2)该班参加这次测试的学生有多少人?
    (3)若成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?
    25、(10分)正方形中,点是上一点,过点作交射线于点,连结.
    (1)已知点在线段上.
    ①若,求度数;
    ②求证:.
    (2)已知正方形边长为,且,请直接写出线段的长.
    26、(12分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
    (1) (2)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据一次函数y=-2x+4的系数k=-2<0,b>0,所以函数的图像不经过第三象限,y随x增大而减小,函数的图像与y轴的交点为(0,4),根据一次函数的平移,可知向下平移4个单位得y=-2x的图像.
    故选:B.
    点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
    2、B
    【解析】
    判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    解:①,不是最简二次根式;
    ②,是最简二次根式;
    ③,是最简二次根式;
    ④,不是最简二次根式;
    故选:B.
    本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
    3、C
    【解析】A选项的被开方数中含有分母;B、D选项的被开方数中含有未开尽方的因数;因此这三个选项都不符合最简二次根式的要求.所以本题的答案应该是C.
    解:A、=;B、=2;D、=2;
    因此这三个选项都不是最简二次根式,故选C.
    4、C
    【解析】
    试题分析:9的算术平方根是1.故选C.
    考点:算术平方根.
    5、C
    【解析】
    先根据菱形的面积公式,得出x、y的函数关系,再根据x的取值范围选出答案.
    【详解】
    ∵菱形的面积S=
    ∴,即y=
    其中,x>0
    故选:C
    本题考查菱形面积公式的应用,注意在求解出x、y的关系后,还需要判断x的取值范围.
    6、A
    【解析】
    根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可
    【详解】
    ①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;
    ②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;
    ③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;
    ④有可能是等腰梯形,故错,
    正确的是②③
    此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理
    7、D
    【解析】
    横坐标为正,纵坐标为负,在第四象限.
    【详解】
    解:∵点p(m,1-2m)在第四象限,
    ∴m>0,1-2m<0,解得:m>,故选D.
    坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.
    8、A
    【解析】
    试题分析:根据无理数是无限不循环小数,可得A.是无理数,B.,C.,D.是有理数,
    故选A.
    考点:无理数
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据勾股定理得到DE=CE=CD,求得△DCE周长=CD+CE+DE=(1+)CD,当CD的值最小时,△DCE周长的值最小,当CD⊥AB时,CD的值最小,根据等腰直角三角形的性质即可得到结论.
    【详解】
    解:∵△DCE是等腰直角三角形,
    ∴DE=CE=CD,
    ∴△DCE周长=CD+CE+DE=(1+)CD,
    当CD的值最小时,△DCE周长的值最小,
    ∴当CD⊥AB时,CD的值最小,
    ∵在等腰直角△ABC中,∠ACB=90°,BC=2,
    ∴AB=BC=2,
    ∴CD=AB=,
    ∴△DCE周长的最小值是2+,
    故答案为:2+.
    本题考查了轴对称——最短路线问题,等腰直角三角形,熟练掌握等腰直角三角形的性质是解题的关键.
    10、1
    【解析】
    由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,1种情况进行讨论.
    【详解】
    解:如图所示:
    故答案是:1.
    本题考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.
    11、
    【解析】
    不等式的解集为直线在直线上方部分所对的x的范围.
    【详解】
    解:由图象可得,当时,直线在直线上方,所以不等式的解集是.
    故答案为:
    本题考查了一次函数与不等式的关系,合理利用图象信息是解题的关键.
    12、m<
    【解析】
    当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2 .
    故答案为m<1/2 .
    13、1
    【解析】
    要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
    【详解】
    解:将长方体展开,连接A、B′,
    ∵AA′=1+3+1+3=8(cm),A′B′=6cm,
    根据两点之间线段最短,AB′==1cm.
    故答案为1.
    考点:平面展开-最短路径问题.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)作线段的中段线,的中点为,连结即可,见解析;(2) 见解析.
    【解析】
    (1)作BC的垂直平分线得到BC的中点F,从而得到BC边上的中线AF;
    (2)写出已知、求证,连接DF、EF,如图,先证明EF为AB边的中位线,利用三角形中位线性质得到EF∥AD,EF=AD,则可判断四边形ADFE为平行四边形,从而得到DE与AF互相平分.
    【详解】
    解:(1)作线段的中段线,的中点为,连结即可。
    (2)已知:分别为三边的中点,与交于点。
    求证:与互相平分。
    证明:连结,
    分别为的中点,
    有,
    又为中点,
    所以,,
    四边形为平行四边形,
    所以,与互相平分.
    本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形中位线定理.
    15、答案不唯一,如选(A﹣B)÷C,化简得,
    【解析】
    首先选出组合,进而代入,根据分式运算顺序进而化简,求出即可.
    【详解】
    选(A﹣B)÷C=(
    =[]
    当x=1时,原式.
    本题考查了分式的化简求值,正确运用分式基本性质是解题的关键.
    16、(1)AF=DE,AF⊥DE,理由见详解;(2)四边形HIJK是正方形,补图、理由见详解.
    【解析】
    (1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE,∠BAF=∠ADE,再由直角三角形的两个锐角互余和有两个角互余的三角形是直角三角形可证得AF⊥DE.
    (2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.
    【详解】
    解:(1)AF=DE, AF⊥DE.
    ∵ABCD是正方形,
    ∴AB=AD,∠DAB=∠ABC=90°,
    ∵AE=BF,
    ∴△DAE≌△ABF,
    ∴AF=DE,∠BAF=∠ADE.
    ∵∠DAB=90°,
    ∴∠BAF+∠DAF=90°,
    ∴∠ADE+∠DAF=90°,
    ∴AF⊥DE.
    ∴AF=DE,AF⊥DE.
    (2)四边形HIJK是正方形.
    如下图,H、I、J、K分别是AE、EF、FD、DA的中点,
    ∴HI=KJ=AF,HK=IJ=ED,
    ∵AF=DE,
    ∴HI=KJ=HK=IJ,
    ∴四边形HIJK是菱形,
    ∵△DAE≌△ABF,
    ∴∠ADE=∠BAF,
    ∵∠ADE+∠AED=90°,
    ∴∠BAF+∠AED=90°,
    ∴∠AOE=90°
    ∴∠KHI=90°,
    ∴四边形HIJK是正方形.
    此题主要考查正方形的判定的方法与性质和菱形的判定,及全等三角形的判定等知识点的综合运用.
    17、(1)乙、甲、丙;(2)丙班级获得冠军.
    【解析】
    利用平均数的公式即可直接求解,即可判断;
    利用加权平均数公式求解,即可判断.
    【详解】
    分、分、分,
    所以从高到低确定三个班级排名顺序为:乙、甲、丙;
    乙班的“动作整齐”分数低于80分,
    乙班首先被淘汰,
    而分、分,
    丙班级获得冠军.
    本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.
    18、 (1) ;(2) 3.
    【解析】
    根据二次根式的运算法则依次计算即可
    【详解】
    (1)解:原式=-=
    (2)解:原式=+=3
    熟练掌握二次根式的计算是解决本题的关键,难度不大
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2 或9−3.
    【解析】
    分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.
    【详解】
    当B′在横对称轴上,此时AE=EB=3,如图1所示,
    由折叠可得△ABF≌△AB′F
    ∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
    ∴∠B′MF=∠B′FM,
    ∴B′M=B′F,
    ∵EB′∥BF,且E为AB中点,
    ∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
    ∴EM=BF,
    设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,
    在Rt△AEB′中,根据勾股定理得:3 +(x) =6,
    解得:x=2 ,即BF=2;
    当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
    设BF=x,B′N=y,则有FN=4−x,
    在Rt△FNB′中,根据勾股定理得:y+(4−x) =x,
    ∵∠AB′F=90°,
    ∴∠AB′M+∠NB′F=90°,
    ∵∠B′FN+∠NB′F=90°,
    ∴∠B′FN=∠AB′M,
    ∵∠AMB′=∠B′NF=90°,
    ∴△AMB′∽△B′NF,
    ∴ ,即,
    ∴y= x,
    ∴(x) +(4−x) =x,
    解得x=9+3 ,x=9−3,
    ∵9+3>4,舍去,
    ∴x=9−3
    所以BF的长为2或9−3,
    故答案为:2 或9−3.
    此题考查翻折变换(折叠问题),解题关键在于作辅助线
    20、
    【解析】
    根据零指数幂和负指数幂运算法则进行计算即可得答案.
    【详解】
    原式=1+=.
    故答案为
    主要考查了零指数幂,负指数幂的运算.负指数为正指数的倒数;任何非0数的0次幂等于1.
    21、(5,-)或(5,-).
    【解析】
    由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
    【详解】
    ∵AE分△ABC的面积比为1:2,点E在线段BC上,
    ∴BE:CE=1:2或BE:CE=2:1.
    ∵B(5,1),C(5,-6),
    ∴BC=1-(-6)=2.
    当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
    当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
    故答案为:(5,-)或(5,-).
    本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
    22、小于
    【解析】
    先分别求出摸出各种颜色球的概率,再进行比较即可得出答案.
    【详解】
    解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,
    ∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,
    ∴摸出白球可能性<摸出黄球的可能性;
    故答案为小于.
    本题主要考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.
    23、x>1
    【解析】
    观察函数图象,写出在y轴右侧的自变量的取值范围即可.
    【详解】
    当x>1时,ax+b<1,
    即不等式ax+b<1的解集为x>1.
    故答案为:x>1
    本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)60人;(3).
    【解析】
    (1)第5小组的频率应该是1-0.05-0.1-0.30-0.35=0.1,所以在直方图上画上第五组即可.
    (2)第5组的人数为9人,频率为0.1,总人数=频数÷频率,从而可得解.
    (3)合格的频率加起来即可.
    【详解】
    (1)1-0.05-0.1-0.30-0.35=0.1.
    补图如下:
    (2)=60(人).
    该班参加这次测试的学生有60人.
    (3)0.30+0.35+0.1=0.8=80%.
    该班成绩的合格率是80%.
    本题考查画直方图,以及熟记频率,频数的概念以及它们之间的关系,从而可得解.
    25、(1)①;②见解析;(2)的长为或
    【解析】
    (1) ①根据正方形性质,求出;根据等腰三角形性质,求出的度数,即可求得.
    ②根据正方形对称性得到;根据四边形内角和证出;利用等角对等边即可证出.
    (2)分情况讨论:①当点F在线段BC上时; ②当点F在线段CB延长线上时;根据正方形的对称性,证出;再根据等腰三角形的性质,求出线段NC,BN;利用勾股定理,求出BE、BD,进而求出DE.
    【详解】
    解:(1)①为正方形,

    又,

    ②证明:正方形关于对称,



    又,





    (2)①当点F在线段BC上时,过E作MN⊥BC,垂足为N,交AD于M,如图1所示:

    ∴N是CF的中点,
    ∴BF=1,∴CF=1

    又∵四边形CDMN是矩形
    ∴为等腰直角三角形


    ②当点F在线段CB延长线上时,如图2所示:
    过点E作MN⊥BC,垂足为N,交AD于M
    ∵正方形ABCD关于BD对称


    又∵



    ∴FC=3


    ∴ ,
    综上所述,的长为或
    本题考查了三角形全等、等腰三角形的性质、三线合一、勾股定理等知识点;难点在(2),注意分情况讨论;本题难度较大,属于中考压轴题.
    26、①;②
    【解析】
    (1)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    (2)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    【详解】
    (1)x2-7x-18=(x+2)(x-9);
    (2)x2+12xy-13y2=(x+13y)(x-y).
    本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    班级
    服装统一
    动作整齐
    动作准确

    80
    84
    88

    97
    78
    80

    86
    80
    83

    相关试卷

    2024年重庆市巴南中学九年级数学第一学期开学检测模拟试题【含答案】:

    这是一份2024年重庆市巴南中学九年级数学第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省浠水县巴河镇中学数学九年级第一学期开学调研试题【含答案】:

    这是一份2024-2025学年湖北省浠水县巴河镇中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市巴川中学2023-2024学年数学九年级第一学期期末预测试题含答案:

    这是一份重庆市巴川中学2023-2024学年数学九年级第一学期期末预测试题含答案,共8页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map