2025届吉林省白山长白县联考数学九上开学监测模拟试题【含答案】
展开
这是一份2025届吉林省白山长白县联考数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数y=中自变量x的取值范围是( )
A.x>3B.x<3C.x≤3D.x≥﹣3
2、(4分)下列图形中,既是轴对称又是中心对称图形的是( )
A.正方形B.等边三角形C.平行四边形D.正五边形
3、(4分)一个正多边形的内角和是1440°,则它的每个外角的度数是( )
A.30° B.36° C.45° D.60°
4、(4分)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积(单位:平方米)与工作时间(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为
A.40平方米B.50平方米C.80平方米D.100平方米
5、(4分) 如果解关于x的方程+1=(m为常数)时产生增根,那么m的值为( )
A.﹣1B.1C.2D.﹣2
6、(4分)如图,在中,是边上的一点,射线和的延长线交于点,如果,那么的值是( )
A.B.C.D.
7、(4分)如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )
A.该班总人数为50B.步行人数为30
C.乘车人数是骑车人数的2.5倍D.骑车人数占20%
8、(4分)△ABC三边长分别为a、b、c,则下列条件不能判断△ABC是直角三角形的是( )
A.a=3,b=4,c=5B.a=4,b=5,c=6
C.a=6,b=8,c=10D.a=5,b=12,c=13
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
10、(4分)如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
11、(4分)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=_____.
12、(4分)如图,AD是△ABC的角平分线,若AB=8,AC=6,则 =_____.
13、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)育才中学开展了“孝敬父母,从家务事做起”活动,活动后期随机调查了八年级部分学生一周在家做家务的时间,并将结果绘制成如下两幅尚不完整的统计图
请你根据统计图提供的信息回答下列问题:
(1)本次调查的学生总数为 人,被调查学生做家务时间的中位数是 小时,众数是 小时;
(2)请你补全条形统计图;
(3)若全校八年级共有学生1500人,估计八年级一周做家务的时间为4小时的学生有多少人?
15、(8分)如图,在中,,点D.E分别是边AB、BC的中点,过点A作交ED的延长线于点F,连接BF。
(1)求证:四边形ACEF是菱形;
(2)若四边形AEBF也是菱形,直接写出线段AB与线段AC的关系。
16、(8分)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求直线BP的解析式.
17、(10分)去年3月,某炒房团以不多于2224万元不少于2152万元的资金分别从A城、B城买入小户型二手房(80平方米/套)共4000平方米.其中A城、B城的购入价格分别为4000元/平方米、7000元/平方米.自住建部今年5月约谈成都市政府负责同志后,成都市进一步加大了调控政策.某炒房团为抛售A城的二手房,决定从6月起每平方米降价1000元.如果卖出相同平方米的房子,那么5月的销售额为640万元,6月的销售额为560万元.
(1)A城今年6月每平方米的售价为多少元?
(2)请问去年3月有几种购入方案?
(3)若去年三月所购房产全部没有卖出,炒房团计划在7月执行销售方案:B城售价为1.05万元/平方米,并且每售出一套返还该购房者a元;A城按今年6月的价格进行销售。要使(2)中的所有方案利润相同,求出a应取何值?
18、(10分)已知:如图,在□ABCD中,对角线AC,BD相交于点O,直线EF过点O,交DA于点E,交BC于点F.求证:OE=OF,AE=CF,DE=BF
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简的结果为______.
20、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
21、(4分)如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为_____.
22、(4分)如图,在△ABC中,∠ABC=90°,∠ACB=30°,D是BC上的一点,且知AC=20,CD=10﹣6,则AD=_____.
23、(4分)函数y=中自变量x的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,BD是矩形ABCD的对角线,,.将沿射线BD方向平移到的位置,连接,,,,如图1.
(1)求证:四边形是平行四边形;
(1)当运动到什么位置时,四边形是菱形,请说明理由;
(3)在(1)的条件下,将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.
25、(10分)如图,一次函数的图象与正比例函数的图象交于点.
(1)求正比例函数和一次函数的解析式;
(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;
(3)求的面积.
26、(12分)计算:
(1) (2)(4)÷2
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解:由题意得,1-x>0,
解得x<1.
故选:B.
本题考查函数自变量取值范围.
2、A
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、正方形既是轴对称图形,也是中心对称图形,故选A正确;
B、等边三角形是轴对称图形,不是中心对称图形,故选项B错误;
C、平行四边形不是轴对称图形,是中心对称图形,故C错误;
D、正五边形是轴对称图形,不是中心对称图形,故选项D错误.
故选A.
本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.
3、B
【解析】
先设该多边形是n边形,根据多边形内角和公式列出方程,求出n的值,即可求出多边形的边数,再根据多边形的外角和是360°,利用360除以边数可得外角度数.
【详解】
设这个多边形的边数为n,则
(n-2)×180°=1440°,
解得n=1.
外角的度数为:360°÷1=36°,
故选B.
此题考查了多边形的内角与外角,关键是根据多边形的内角和公式(n-2)•180°和多边形的外角和都是360°进行解答.
4、B
【解析】
试题分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).
故选B.
考点:函数的图象.
5、A
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.
【详解】
方程两边都乘以x﹣5,得:x﹣6+x﹣5=m.
∵方程有增根,∴x=5,将x=5代入x﹣6+x﹣5=m,得:m=﹣1.
故选A.
本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
6、A
【解析】
由平行四边形的性质可得AD∥BC,AB∥CD,从而可得△EAF∽△EBC,△EAF∽△CFD,由,可得,继而可得,即可求得=.
【详解】
:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴△EAF∽△EBC,△EAF∽△CFD,
∵,
∴,
∴,
∴=,
故选A.
本题考查了平行四边形的性质、相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方、周长比等于相似比是解题的关键.
7、B
【解析】
根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.
【详解】
A、总人数是:25÷50%=50(人),故A正确;
B、步行的人数是:50×30%=15(人),故B错误;
C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;
D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.
由于该题选择错误的,
故选B.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
8、B
【解析】
根据勾股定理进行判断即可得到答案.
【详解】
A.∵32+42=52,∴△ABC是直角三角形;
B.∵52+42≠62,∴△ABC不是直角三角形;
C.∵62+82=102,∴△ABC是直角三角形;
D.∵122+42=132,∴△ABC是直角三角形;
故选:B.
本题考查勾股定理的应用,解题的关键是掌握勾股定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x<﹣2
【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
【详解】
解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
∴一次函数图象经过第二、三、四象限,
∴当x<-2时,y>1,即ax+b>1,
∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
10、﹣1或3
【解析】
把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
【详解】
解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
∴a=2,b=2,
∴点A(1,2)与点B(2,1),
延长AB交x轴于点C,如图2,
设直线AB的解析式为y=mx+n,
则有,
解得,
∴直线AB的解析式为y=﹣x+1.
∵点C是直线y=﹣x+1与x轴的交点,
∴点C的坐标为(1,0),OC=1,
∵S△PAB=2,
∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
∴PC=2.
∵C(1,0),P(m,0),
∴|m﹣1|=2,
∴m=﹣1或3,
故答案为:﹣1或3.
本题考查的是反比例函数,熟练掌握反比例函数图像上点的特征是解题的关键.
11、2
【解析】
解:过D点作DE⊥x轴,垂足为E,
∵Rt△OAB中,∠OAB=90°,
∴DE∥AB,
∵D为Rt△OAB斜边OB的中点D,
∴DE为Rt△OAB的中位线,
∵△OED∽△OAB,
∴两三角形的相似比为,
∵双曲线,可知,
,
由,
得,
解得
12、4:3
【解析】
作DE⊥AB于点E,DF⊥AC于点F,
∵AD平分∠BAC,
∴DE=DF,
===.
故答案为4∶3.
点睛:本题关键在于利用角平分线的性质得出两个三角形的高相等,将两个三角形面积之比转化为对应的底之比.
13、1.
【解析】
延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.
【详解】
解:如图,延长BD交AB于F,
∵AD平分∠BAC,
∴∠BAD=∠FAD,
∵BD⊥AD,
∴∠ADB=∠ADF=90°,
在△ADF和△ADB中
∴△ADF≌△ADB(ASA),
∴AF=AB,BD=FD,
∴CF=AC-AB=6-4=2cm,
又∵点E为BC的中点,
∴DE是△BCF的中位线,
.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)50,4,5;(2)作图见解析;(3)480人.
【解析】
(1)根据统计图可知,做家务达3小时的共10人,占总人数的20%,由此可得出总人数;求出做家务时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据所求结果补全条形统计图即可;
(2)求出做家务时间为4、6小时的人数;
(3)求出总人数与做家务时间为4小时的学生人数的百分比的积即可.
【详解】
解:(1)∵做家务达3小时的共10人,占总人数的20%,
∴=50(人).
∵做家务4小时的人数是32%,
∴50×32%=16(人),
∴男生人数=16﹣8=8(人);
∴做家务6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
∴做家务3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
∴中位数是4小时,众数是5小时.
故答案为:50,4,5;
(2)补全图形如图所示.
(3)∵做家务4小时的人数是32%,
∴1500×32%=480(人).
答:八年级一周做家务时间为4小时的学生大约有480人
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
15、(1)见解析;(2),.
【解析】
(1)由题意得出,DE是的中位线,得出四边形ACEF是平行四边形,再根据点E是边BC的中点得,即可证明.
(2)根据菱形的性质,得出,,即可得出,再根据直角三角形斜边的中线得出EC=BC=AC=AE,推出为等边三角形,即可求出.
【详解】
(1)证明:点D、E分别是边AB、BC的中点,
DE是的中位线,
,
,
四边形ACEF是平行四边形,
点E是边BC的中点,
,
,
,
是菱形.
(2)是菱形
由(1)知,是菱形
又BC=2AC,E为BC的中点
AE=BC
EC=BC=AC=AE
为等边三角形
∠C=60°
综上,,
本题考查平行四边形的判定、菱形的判定和性质、三角形中位线定理、含30°角的直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.
16、(1)(-,0);(0,1);(2)y=x+1或y=-x+1.
【解析】
试题分析:(1)根据坐标轴上点的坐标特征确定A点和B点坐标;
(2)由OA=,OP=2OA得到OP=1,分类讨论:当点P在x轴正半轴上时,则P点坐标为(1,0);当点P在x轴负半轴上时,则P点坐标为(-1,0),然后根据待定系数法求两种情况下的直线解析式.
试题解析:(1)把x=0代入y=2x+1,得y═1,
则B点坐标为(0,1);
把y=0代入y=2x+1,得0=2x+1,
解得x=-,
则A点坐标为(-,0);
(2)∵OA=,
∴OP=2OA=1,
当点P在x轴正半轴上时,则P点坐标为(1,0),
设直线BP的解析式为:y=kx+b,
把P(1,0),B(0,1)代入得
解得:
∴直线BP的解析式为:y=-x+1;
当点P在x轴负半轴上时,则P点坐标为(-1,0),
设直线BP的解析式为y=kx+b,
把P(-1,0),B(0,1)代入得
解得:k=1,b=1
所以直线BP的解析式为:y=x+1;
综上所述,直线BP的解析式为y=x+1或y=-x+1.
考点:1.一次函数图象上点的坐标特征;2.待定系数法求一次函数解析式.
17、(1)A城今年6月每平方米的售价为元;(2)方案有四种,如表所示见解析;(3)应取40000元.
【解析】
(1)设A城今年6月每平方米的售价为x元,根据卖出相同平米房子的等量条件,列出分式方程,解分式方程即可;
(2)设去年3月从A城购进套,则根据“不多于2224万元不少于2152万元的资金”列出不等式,解不等式,根据不等式的限制即可确定可能方案;
(3)设A城有套,总利润为元,列出A城售出套数和总利润的关系式,最后根据与(2)利润相同,即可解答.
【详解】
(1)设A城今年6月每平方米的售价为x元,则
解之得:
经检验:是原方程的根.
答:A城今年6月每平方米的售价为元.
(2)设去年3月从A城购进套,则
解之得:
∴方案有四种,如下表所示:
(3)设A城有套,总利润为元,则
∴
∵所有方案利润相同
∴0000元
答:应取40000元.
本题考查了分式方程和一元一次不等式的应用,解题的关键是仔细审题,从而找到数量关系列出分式方程或不等式.
18、证明见解析
【解析】
根据平行四边形的性质和平行线性质得出OA=OC,∠OAE=∠OCF,证△AOE≌△COF,推出OE=OF,AE=CF,DE=BF.
【详解】
证明:∵四边形ABCD是平行四边形,且对角线AC与BD相交于点O,AD∥BC,
∴OA=OC,∠EAO=∠FCO.
又∵∠AOE=∠COF,∴△AOE≌△COF. ∴OE=OF,AE=CF.
又∵AD=CB,∴DE=AD-AE=CB-CF=BF.
本题考查平行四边形的性质,全等三角形的判定和性质,解题关键是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据二次根式的性质进行化简.由即可得出答案.
【详解】
解:,
故答案为:.
本题考查的是二次根式的化简,掌握二次根式的性质: 是解题的关键.
20、.
【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.
【详解】
如图,作AE⊥OB于E,A′H⊥OB于H.
∵A(1,),
∴OE=1,AE=,
∴OA==2,
∵△OAB是等边三角形,
∴∠AOB=60°,
∵∠AOA′=15°,
∴∠A′OH=60°﹣15°=45°,
∵OA′=OA=2,H⊥OH,
∴A′H=OH=,
∴(,),
故答案为:(,).
此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.
21、1:3
【解析】
试题解析:设平行四边形的面积为1,
∵四边形ABCD是平行四边形,
∴
又∵M是的AB的中点,
则
∴上的高线与上的高线比为
∴
∴
S阴影面积
则阴影部分的面积与▱ABCD的面积比为.
故填空答案:.
22、1
【解析】
根据直角三角形的性质求出AB,根据勾股定理求出BC,计算求出BD,根据勾股定理计算即可.
【详解】
解:∵∠ABC=90°,∠ACB=30°,
∴AB=AC=10,
由勾股定理得,BC=,
∴BD=BC﹣CD=6,
∴AD=,
故答案为:.
本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
23、x⩽2且x≠−1.
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,2−x⩾0且x+1≠0,
解得x⩽2且x≠−1.
故答案为:x⩽2且x≠−1.
此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(1)当运动到BD中点时,四边形是菱形,理由见解析;(3)或.
【解析】
(1)根据平行四边形的判定定理一组对边相等一组对角相等,即可解答
(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;
(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.
【详解】
(1)∵BD是矩形ABCD的对角线,,
∴,
由平移可得,,
,
∴
∴四边形是平行四边形,
(1)当运动到BD中点时,四边形是菱形
理由:∵为BD中点,
∴中,,
又∵,
∴是等边三角形,
∴,
∴四边形是菱形;
(3)将四边形ABC′D′沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:
∴矩形周长为或.
此题考查平移的性质,菱形的判定与性质,矩形的性质,图形的剪拼,解题关键在于掌握各性质定理
25、(1)一次函数表达式为y=2x-2;正比例函数为y=x;(2)x
相关试卷
这是一份2024年吉林省白山长白县联考九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省白山长白县联考2023-2024学年数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了如果两个相似三角形的周长比是1,一次函数y=等内容,欢迎下载使用。
这是一份吉林省白山长白县联考2023-2024学年数学九上期末监测试题含答案,共7页。试卷主要包含了在平面直角坐标系中,点M等内容,欢迎下载使用。