开学活动
搜索
    上传资料 赚现金

    2025届湖南省长沙市一中学湘一南湖学校数学九年级第一学期开学经典试题【含答案】

    2025届湖南省长沙市一中学湘一南湖学校数学九年级第一学期开学经典试题【含答案】第1页
    2025届湖南省长沙市一中学湘一南湖学校数学九年级第一学期开学经典试题【含答案】第2页
    2025届湖南省长沙市一中学湘一南湖学校数学九年级第一学期开学经典试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖南省长沙市一中学湘一南湖学校数学九年级第一学期开学经典试题【含答案】

    展开

    这是一份2025届湖南省长沙市一中学湘一南湖学校数学九年级第一学期开学经典试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)方程有( )
    A.两个不相等的实数根B.两个相等的实数根C.无实数根D.无法确定
    2、(4分)设方程x2+x﹣2=0的两个根为α,β,那么(α﹣2)(β﹣2)的值等于( )
    A.﹣4B.0C.4D.2
    3、(4分)已知一次函数y=kx+b(k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb图象可能是( )
    A.B.C.D.
    4、(4分)(2011•潍坊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是( )
    A、小莹的速度随时间的增大而增大B、小梅的平均速度比小莹的平均速度大
    C、在起跑后180秒时,两人相遇D、在起跑后50秒时,小梅在小莹的前面
    5、(4分)把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为( )
    A.等于4cmB.小于4cm
    C.大于4cmD.小于或等于4cm
    6、(4分)若代数式有意义,则实数x的取值范围是( )
    A.x=0B.x=3C.x≠0D.x≠3
    7、(4分)如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为( )
    A.B.C.D.
    8、(4分)已知三角形的周长是1.它的三条中位线围成的三角形的周长是( )
    A.1B.12C.8D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
    10、(4分)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A’B’C’(A和A’,B和B’,C和C’分别是对应顶点),直线经过点A,C’,则点C’的坐标是 .
    11、(4分)如图,反比例函数 y=的图象经过矩形 OABC 的一个顶点 B,则矩形 OABC 的面积等于___.
    12、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.
    13、(4分)关于一元二次方程有两个相等的实数根,则的值是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知某服装厂现有种布料70米,种布料52米,现计划用这两种布料生产、两种型号的时装共80套.已知做一套型号的时装需用A种布料1.1米,种布料0.4米,可获利50元;做一套型号的时装需用种布料0.6米,种布料0.9米,可获利45元.设生产型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为元.
    (1)求(元)与(套)的函数关系式.
    (2)有几种生产方案?
    (3)如何生产使该厂所获利润最大?最大利润是多?
    15、(8分)某商品的进价为每件 30 元,现在的售价为每件 40 元,每星期可卖出 150 件.市场调查 发现:如果每件的售价每涨 1 元(售价每件不能高于 45 元),那么每星期少卖 10 件,设每 件涨价 x 元( x 为非负整数),每星期的销量为 y 件.
    (1)写出 y 与 x 的关系式;
    (2)要使每星期的利润为 1560 元,从有利于消费者的角度出发,售价应定为多少?
    16、(8分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
    (1)求k1,k2,b的值;
    (2)求△AOB的面积;
    (3)请直接写出不等式≥k2x+b的解.
    17、(10分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:
    =
    ====
    问题解决:
    (1)请你按照上面的方法分解因式:;
    (2)已知一个长方形的面积为,长为,求这个长方形的宽.
    18、(10分)如图,,平分,交于点,平分,交于点,连接.求证:四边形是菱形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)当x=______时,分式的值为0.
    20、(4分)已知命题:全等三角形的对应角相等.这个命题的逆命题是:__________.
    21、(4分)一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.
    22、(4分)如图,矩形ABCD中,,,把矩形ABCD绕点A顺时针旋转,当点D落在射线CB上的点P处时,那么线段DP的长度等于_________.
    23、(4分)如图,在直角坐标系中,正方形、的顶点均在直线上,顶点在轴上,若点的坐标为,点的坐标为,那么点的坐标为____,点的坐标为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知分别为平行四边形的边上的点,且.
    (1)求证:四边形是平行四边形;
    (2)当,且四边形是菱形,求的长.
    25、(10分)如图,在中,,,垂足分别为.求证四边形是矩形.
    26、(12分)有这样一个问题:
    探究函数的图象与性质.
    小东根据学习函数的经验,对函数的图象与性质进行了探究.
    下面是小东的探究过程,请补充完成:
    (1)填表
    (2)根据(1)中的结果,请在所给坐标系中画出函数的图象;
    (3)结合函数图象,请写出该函数的一条性质.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据根的差别式进行判断即可.
    【详解】
    解:∵a=1,b=3,c=2,
    ∴∆=
    =1>0
    ∴ 这个方程有两个不相等的实数根.
    故选:A.
    本题考查了一元二次方程根的判别式,正确理解根的判别式是解题的关键.
    2、C
    【解析】
    试题分析:根据方程的系数利用根与系数的关系找出α+β=﹣1,α•β=﹣2,将(α﹣2)(β﹣2)展开后代入数据即可得出结论.∵方程+x﹣2=0的两个根为α,β,∴α+β=﹣1,α•β=﹣2,∴(α﹣2)(β﹣2)=α•β﹣2(α+β)+1=﹣2﹣2×(﹣1)+1=1.
    故选C.
    考点:根与系数的关系.
    3、A
    【解析】
    首先根据一次函数的性质确定k,b的符号,再确定一次函数y=﹣bx+kb系数的符号,判断出函数图象所经过的象限.
    【详解】
    ∵一次函数y=kx+b经过第二,三,四象限,
    ∴k0,
    所以一次函数y=−bx+kb的图象经过一、二、三象限,
    故选:A.
    本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.
    4、D
    【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;
    B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;
    C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;
    D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.
    5、D
    【解析】
    试题分析:本题中如果平移的方向是垂直向上或垂直向下,则平移后的两直线之间的距离为4cm;如果平移的方向不是垂直向上或垂直向下,则平移后的两直线之间的距离小于4cm;故本题选D.
    6、D
    【解析】
    分析:根据分式有意义的条件进行求解即可.
    详解:由题意得,x﹣3≠0,
    解得,x≠3,
    故选D.
    点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.
    7、B
    【解析】
    根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=
    ∠DAC=22.5°,根据三角形的内角和即可得到结论.
    【详解】
    解:在正方形中,∠DAC=∠ACD=45∘,
    由作图知,∠CAP=∠DAP=22.5°,
    ∴∠P=180°−∠ACP−∠CAP=22.5°,
    故选B.
    本题考察了正方形的性质,掌握正方形的对角线平分对角是解题的关键.
    8、C
    【解析】
    由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
    【详解】
    解:∵三角形的周长是1,
    ∴它的三条中位线围成的三角形的周长是:1×=2.
    故选:C.
    此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=2x+1.
    【解析】
    用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
    【详解】
    解:把(﹣1,2),(0,1)分别代入y=kx+b得,

    解得,
    所以,y=2x+1.
    故答案为y=2x+1.
    本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
    10、(1,3)。
    【解析】∵B的坐标为(-1,0),BC⊥x轴,∴点C的横坐标―1。
    ∵将△ABC以y轴为对称轴作轴对称变换,得到△A’B’C’, ∴点C’的横坐标为1。
    ∵A(-2,0)在直线上,∴。
    ∴直线解析式为。
    ∵当x=1时,。∴点C’的坐标是(1,3)。
    11、4
    【解析】
    因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.
    【详解】
    由于点B在反比例函数y=的图象上,k=4
    故矩形OABC的面积S=|k|=4.
    故答案为:4
    本题考查了反比例函数系数k的几何意义,掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|是解题的关键.
    12、4.
    【解析】
    先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.
    【详解】
    解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,
    ∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,
    ∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,
    ∴四边形EFGH是矩形,
    边接AC,则AC=BD=4,
    又∵EH是△ABD的中位线,
    ∴EH=BD=2,
    同理EF=AC=2,
    ∴四边形EFGH的面积为2×2=4.
    故答案为4.
    本题考查了正方形的性质,矩形的判定,三角形中位线定理.
    13、16
    【解析】
    根据根判别式得出答案.
    【详解】
    因为关于一元二次方程有两个相等的实数根,
    所以
    解得k=16
    故答案为:16
    考核知识点:根判别式.理解根判别式的意义是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=5x+3600;(2)共有5种生产方案;(3)当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
    【解析】
    (1)根据题意,根据总利润=型号的总利润+型号的总利润,即可求出(元)与(套)的函数关系式;
    (2)根据A、B两种布料的总长列出不等式,即可求出x的取值范围,从而求出各个方案;
    (3)一次函数的增减性,求最值即可.
    【详解】
    解:(1)由题意可知:y=50x+45(80-x)=5x+3600
    即(元)与(套)的函数关系式为y=5x+3600;
    (2)由题意可知:
    解得:
    故可生产型号的时装40套、生产型号的时装80-40=40套或生产型号的时装41套、生产型号的时装80-41=39套或生产型号的时装42套、生产型号的时装80-42=38套或生产型号的时装43套、生产型号的时装80-43=37套或生产型号的时装44套、生产型号的时装80-44=36套,共5种生产方案
    答:共有5种生产方案.
    (3)∵一次函数y=5x+3600中,,5>0
    ∴y随x的增大而增大
    ∴当x=44时,y取最大值,ymax=44×5+3600=3820
    即当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
    答: 当生产型号的时装44套、生产型号的时装36套时,该厂所获利润最大,最大利润为3820元.
    此题考查的是一次函数的应用和一元一次不等式组的应用,掌握实际问题中的等量关系、不等关系和一次函数的增减性是解决此题的关键.
    15、(1)y=150-10x(0≤x≤5且x为整数);(2)售价应定为42元.
    【解析】
    (1)根据每周销量=150-10×每件涨价钱数,即可得出y与x的关系式;
    (2)根据每周的总利润=每件商品的利润×每周的销量,可得关于x的一元二次方程,解之即得x的值,取其较小者代入40+x即可得出结论.
    【详解】
    解:(1)由题意,得y=150-10x(0≤x≤5且x为整数);
    (2)设每星期的利润为w元, 则w=(40+x-30)y =(x+10)(150-10x)=-10x2+50x+1500,
    要使每星期的利润为1560元,
    则w=1560,即-10x2+50x+1500=1560.
    解这个方程得:x1=2,x2=3.
    ∴当x=2或3时,可使每星期的利润为1560元,
    从有利于消费者的角度出发,应取x=2,此时40+x=42,即售价应定为42元.
    本题是一元二次方程的应用问题中较为典型的类型,解题的思路一般是先表示出销量,再表示出总利润,最后得出方程.需要注意的是,在列方程时,要认真审题,加强分析,注意题意中的“一涨一少”,明确涨的是什么,少的是什么.
    16、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
    【解析】
    (1)由点A的坐标利用反比例函数图象上点的坐标特征,即可得出反比例函数解析式,再结合点B的横坐标即可得出点B的坐标,根据点A、B的坐标利用待定系数法,即可求出一次函数解析式;
    (1)根据一次函数图象上点的坐标特征,即可求出一次函数图象与y轴的交点坐标,再利用分割图形法即可求出△AOB的面积;
    (3)根据两函数图象的上下位置关系,即可得出不等式的解集.
    【详解】
    (1)∵反比例函数y=与一次函数y=k1x+b的图象交于点A(1,4),B(﹣4,m),
    ∴k1=1×4=8,m==﹣1,
    ∴点B的坐标为(﹣4,﹣1).
    将A(1,4)、B(﹣4,﹣1)代入y1=k1x+b中,,
    解得:,
    ∴k1=8,k1=1,b=1.
    (1)当x=0时,y1=x+1=1,
    ∴直线AB与y轴的交点坐标为(0,1),
    ∴S△AOB=×1×4+×1×1=2.
    (3)观察函数图象可知:
    不等式≥k1x+b的解集为x≤﹣4或0<x≤1.
    本题考查了反比例函数与一次函数的交点问题,解题的关键是:(1)根据待定系数法求出函数解析式;(1)利用分割图形法求出△AOB的面积;(3)根据两函数图象的上下位置关系找出不等式的解集.
    17、(1); (2)长为时这个长方形的宽为
    【解析】
    按照原题解题方法,进而借助完全平方公式以及平方差公式分解因式得出即可.
    【详解】
    (1)
    =
    =
    =
    =
    =
    (2) ∵
    =
    =
    ∴长为时这个长方形的宽为.
    18、详见解析
    【解析】
    由角平分线和平行线的性质先证出,,从而有,得到四边形是平行四边形,又因为,所以四边形是菱形.
    【详解】
    证明:∵平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    同理.
    ∴,
    ∵,
    ∴且,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形是菱形.
    本题考查了菱形,熟练掌握菱形的判定方法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1.
    【解析】
    直接利用分式的值为零则分子为零,分母不为零进而得出答案.
    【详解】
    解:∵分式的值为0,
    ∴1x-4=0且x-1≠0,
    解得:x=1.
    故答案为:1.
    本题考查分式的值为零的条件,正确把握分式的定义是解题关键.
    20、对应角相等的三角形全等
    【解析】
    根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题.
    【详解】
    命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,
    故其逆命题是对应角相等的三角形是全等三角形.
    故答案是:对应角相等的三角形是全等三角形.
    考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
    21、
    【解析】
    设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.
    【详解】
    设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,
    解得x=
    故折断处离地面的高度是尺.
    此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.
    22、
    【解析】
    【分析】画图,分两种情况:点P在B的右侧或左侧.根据旋转和矩形性质,运用勾股定理,分别求出BP和PC,便可求出PD.
    【详解】(1)如图,当P在B的右侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形ABP中,BP=,
    所以,PC=BC-BP=5-4=1,
    在直角三角形PDC中,PD=,
    (2)如图,当点P在B的左侧时,由旋转和矩形性质得:
    AP=AD=5,AB=CD=3,
    在直角三角形APB中,PB=,
    所以,PC=BC+PB=5+4=9,
    在在直角三角形PDC中,PD=,
    所以,PD的长度为
    故答案为
    【点睛】本题考核知识点:矩形,旋转,勾股定理. 解题关键点:由旋转和矩形性质得到边边相等,由勾股定理求边长.
    23、
    【解析】
    先求出点、的坐标,代入求出解析式,根据=1,(3,2)依次求出点点、、、的纵坐标及横坐标,得到规律即可得到答案.
    【详解】
    ∵(1,1),(3,2),
    ∴正方形的边长是1,正方形的边长是2,
    ∴(0,1),(1,2),
    将点、的坐标代入得,
    解得,
    ∴直线解析式是y=x+1,
    ∵=1,(3,2),
    ∴的纵坐标是,横坐标是,
    ∴的纵坐标是,横坐标是,
    ∴的纵坐标是,横坐标是,
    ∴的纵坐标是,横坐标是,
    由此得到的纵坐标是,横坐标是,
    故答案为:(7,8),(,).
    此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)10
    【解析】
    (1)首先由已知证明AM∥NC,BN=DM,推出四边形AMCN是平行四边形.
    (2)由已知先证明AN=BN,即BN=AN=CN,从而求出BN的长.
    【详解】
    (1)证明:四边形是平行四边形,
    又.
    即,

    四边形是平行四边形;
    (2)四边形是菱形,

    又,
    即,


    .
    此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.
    25、证明见解析
    【解析】
    利用平行四边形性质得出AB平行CD,结合可得∠FAE为90°,然后进一步可得四边形AFCE三个内角为90°,从而证明出其为矩形.
    【详解】
    ∵,,
    ∴∠AFC=∠AEC=90°,
    ∵四边形ABCD为平行四边形,
    ∴AB∥CD,
    ∴∠FAE+∠AEC=180°,
    ∴∠FAE=90°,
    ∴四边形AFCE为矩形.
    本题主要考查了矩形的判定,熟练掌握相关判定定理是解题关键.
    26、(1)见解析;(2)见解析;(3)见解析
    【解析】
    (1)将x的值代入函数中,再求得y的值即可;
    (2)根据(1)中x、y的值描点,连线即可;
    (3)根据(2)中函数的图象写出一条性质即可,如:不等式成立的的取值范围是.
    【详解】
    (1)填表如下:
    (2)根据(1)中的结果作图如下:
    (3)根据(2)中的图象,不等式成立的的取值范围是.
    考查了画函数的图象、性质,解题关键是由列表得到图象,由图象得到性质.
    题号





    总分
    得分
    批阅人

    0
    1
    2
    3
    4
    5
    6
    . . .

    3
    2
    . . .
    . . .
    0
    1
    2
    3
    4
    5
    6
    . . .
    . . .
    3
    2
    1
    0
    . . .

    相关试卷

    2024年湖南省长沙市望城区第二中学数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024年湖南省长沙市望城区第二中学数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖南省长沙市一中学湘一南湖学校数学九年级第一学期期末检测模拟试题含答案:

    这是一份2023-2024学年湖南省长沙市一中学湘一南湖学校数学九年级第一学期期末检测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,如图一段抛物线y=x2﹣3x等内容,欢迎下载使用。

    2023-2024学年湖南省长沙市青竹湖湘一外国语学校数学九上期末经典模拟试题含答案:

    这是一份2023-2024学年湖南省长沙市青竹湖湘一外国语学校数学九上期末经典模拟试题含答案,共7页。试卷主要包含了三角形的内心是,已知二次函数y=mx2+x+m等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map