2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )
A.B.2C.2D.4
2、(4分)若x>y,则下列式子中错误的是( )
A.﹣3x>﹣3yB.3x>3yC.x﹣3>y﹣3D.x+3>y+3
3、(4分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是( )
A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)
4、(4分)函数y=中,自变量x的取值范围是( )
A.x≥1B.x>1C.x≥1且x≠2D.x≠2
5、(4分)在下列式子中,x可以取1和2的是( )
A.B.C.D.
6、(4分)若一个多边形的内角和是900°,则这个多边形的边数是( )
A.5 B.6 C.7 D.8
7、(4分)如图,在▱ABCD中,已知,,AE平分交BC于点E,则CE长是
A.8cmB.5cmC.9cmD.4cm
8、(4分)如图,在正方形 ABCD 中,BD=2,∠DCE 是正方形 ABCD 的外角,P 是∠DCE 的角平分线 CF 上任意一点,则△PBD 的面积等于 ( )
A.1B.1.5C.2D.2.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.
10、(4分)数据2,4,3,x,7,8,10的众数为3,则中位数是_____.
11、(4分)若关于x的方程产生增根,那么 m的值是______.
12、(4分)在平面直角坐标系xOy中,已知A(0,1),B(1,0), C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.
13、(4分)如图,已知△ABC∽△ADB,若AD=2,CD=2,则AB的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).
(1)求证:AF∥CE;
(2)当t为何值时,四边形EHFG为菱形;
(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.
15、(8分)王先生准备采购一批(大于100条)某种品牌的跳绳,采购跳绳有在实体店和网店购买两种方式,通过洽谈,获得了以下信息:
(1)请分别写出王先生在实体店、网店购买跳绳所需的资金y1、y2元与购买的跳绳数x(x>100)条之间的函数关系式;
(2)王先生选取哪种方式购买跳绳省钱?
16、(8分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表
(1)求y与x之间的函数关系式;
(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.
①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)
②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?
17、(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:△ABF是等腰三角形.
18、(10分)化简求值:(﹣1)÷,其中a=2﹣ .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形ABCD中,AE垂直平分BC,垂足为E,AB=6,则菱形ABCD的对角线BD的长是_____.
20、(4分)如图在平面直角坐标系中,,,以为边作正方形,则点的坐标为___________.
21、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.
22、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______
23、(4分)如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行
(1)若∠A=∠B,求证:AD=BC.
(2)已知AD=BC,∠A=70°,求∠B的度数.
25、(10分)如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.
(1)如图1,当F在直线y = x上时,函数图象过点B,求线段OF的长.
(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.
①求证:CD=2AE.
②若AE+CD=DE,求k.
③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.
26、(12分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
(1)填表:(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选B.
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
2、A
【解析】
根据不等式的基本性质逐一判断即可.
【详解】
解:∵x>y,
∴A、﹣3x<﹣3y,故A错误,
B、3x>3y,正确,
C、x﹣3>y﹣3,正确,
D、x+3>y+3,正确,
故答案为:A.
本题考查了不等式的基本性质,解题的关键是熟知当不等式两边同时乘以一个负数,不等号的方向要改变.
3、A
【解析】
【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号即可得出答案.
【详解】∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,
∴点A的坐标是:(4,1),
故选A.
【点睛】本题考查了关于x轴对称的点的坐标特征,正确把握横纵坐标的关系是解题关键.
4、C
【解析】
试题分析:依题意得:x﹣1≥0且x﹣1≠0,
解得x≥1且x≠1.
故选C.
考点:函数自变量的取值范围.
5、B
【解析】
根据分式和二次根式有意义的条件即可求出答.
【详解】
解:A.x﹣1≠0,所以x≠1,故A不可以取1
B.x﹣1≥0,所以x≥1,故B可以取1和2
C.x﹣2≥0,所以x≥2,故C不可以取1
D.x﹣2≠0,所以x≠2,故D不可以取2
故选:B.
本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.
6、C
【解析】
根据多边形的内角和公式(n﹣2)•180°,列式求解即可.
【详解】
设这个多边形是n边形,根据题意得,
(n﹣2)•180°=900°,
解得n=1.
故选:C.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
7、B
【解析】
直接利用平行四边形的性质得出,,进而结合角平分线的定义得出,进而得出,求出EC的长即可.
【详解】
解:四边形ABCD是平行四边形,
,,
平分交BC于点E,
,
,
,
,
,
.
故选B.
此题主要考查了平行四边形的性质以及角平分线的定义,正确得出是解题关键.
8、A
【解析】
由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.
解:△PBD的面积等于 ×2×1=1.故选A.
“点睛”考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA
【解析】
根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;
根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;
根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.
故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.
10、1
【解析】
先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:∵这组数据2,1,3,x,7,8,10的众数为3,
∴x=3,
从小到大排列此数据为:2,3,3,1,7,7,10,
处于中间位置的数是1,
∴这组数据的中位数是1;
故答案为:1.
本题主要考查数据统计中的众数和中位数的计算,关键在于根据题意求出未知数.
11、1
【解析】
分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
【详解】
分式方程去分母得:x−1=m+2x−4,
由题意得:x−2=0,即x=2,
代入整式方程得:2−1=m+4−4,
解得:m=1.
故答案为:1.
此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
12、(-2,0)或(4,0)或(2,2)
【解析】
分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.
【详解】
解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);
②BC为对角线时,点D的坐标为(4,0);
③AC为对角线时,点D的坐标为(2,2).
综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).
故答案为(-2,0)或(4,0)或(2,2).
本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.
13、2.
【解析】
利用相似三角形的性质即可解决问题.
【详解】
∵△ABC∽△ADB,
∴,
∴AB2=AD•AC=2×4=8,
∵AB>0,
∴AB=2,
故答案为:2.
此题考查相似三角形的性质定理,相似三角形的对应边成比例.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)t=1,(3)不存在某个时刻t,使四边形EHFG为矩形.
【解析】
(1)根据菱形的性质得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根据全等三角形的性质得到∠DFA=∠BEC,根据平行线的判定定理即可得到结论;
(2)过D作DM⊥AB于M,连接GH,EF,推出四边形AECF是平行四边形,根据菱形的判定定理即可得到四边形EGFH是菱形,证得四边形DMEF是矩形,于是得到ME=DF=t列方程即可得到结论;
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,根据矩形的性质列方程即可得到结果.
【详解】
(1)证明:∵动点E、F同时运动且速度相等,
∴DF=BE,
∵四边形ABCD是菱形,
∴∠B=∠D,AD=BC,AB∥DC,
在△ADF与△CBE中,
∴△ADF≌△CBE,
∴∠DFA=∠BEC,
∵AB∥DC,
∴∠DFA=∠FAB,
∴∠FAB=∠BEC,
∴AF∥CE;
(2)过D作DM⊥AB于M,连接GH,EF,
∴DF=BE=t,
∵AF∥CE,AB∥CD,
∴四边形AECF是平行四边形,
∵G、H是AF、CE的中点,
∴GH∥AB,
∵四边形EGFH是菱形,
∴GH⊥EF,
∴EF⊥AB,∠FEM=90°,
∵DM⊥AB,
∴DM∥EF,
∴四边形DMEF是矩形,
∴ME=DF=t,
∵AD=4,∠DAB=60°,DM⊥AB,
∴
∴BE=4﹣2﹣t=t,
∴t=1,
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,
∵四边形EHFG为矩形,
∴EF=GH,
∴EF2=GH2,
即解得t=0,0<t<4,
∴与原题设矛盾,
∴不存在某个时刻t,使四边形EHFG为矩形.
属于四边形的综合题,考查全等三角形的判定与性质,菱形的性质,矩形的判定等,掌握菱形的性质,矩形的判定是解题的关键.
15、(1)y1=32x;y2=28x+1200;(2)当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
【解析】
(1)根据题意和表格求得用这两种方式购买跳绳所需的资金y(元)与购买的跳绳数x(条)之间的函数关系式即可.(2)比较(1)中求出的两个函数的大小并求出x的范围即可.(3)令y=10000,可以求得两种方式分别可以购买的跳绳数,从而可以得到王先生用不超过10000元购买跳绳,他最多能购买多少条跳绳.
【详解】
(1)由题意可得:
王先生在实体店购买跳绳所需的资金y1(元)与购买的跳绳数x(条)之间的函数关系式为:y1=40x×0.8=32x;
王先生在网店购买跳绳所需的资金y2(元)与购买的跳绳数x(条)之间的函数关系式为:y2=40×100+(x-100)×40×0.7=28x+1200;
(2)当y1>y2时,32x>28x+1200,
解得x>300;
当y1=y2时,32x=28x+1200,
解得x=300;
当y1<y2时,32x>28x+1200,
解得x<300;
∴当100<x<300时,在实体店购买省钱,当x=300时,在实体店和网店购买一样,当x>300时,在网店购买省钱.
本题考查一次函数的应用,明确题意,找出所求问题需要的条件,列出相应的函数关系式,会根据函数的值,求出相应的x的值是解题关键.
16、 (1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
【解析】
(1)根据函数图象和图象中的数据可以求得y与x的函数关系式;
(2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;
②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.
【详解】
解:(1)设y与x的函数关系式为y=kx+b,
,得,
即y与x的函数关系式为y=-0.5x+65(10≤x≤70,且为整数);
(2)①设z与a之间的函数关系式为z=ma+n,
,得,
∴z与a之间的函数关系式为z=-a+90,
当z=40时,40=-a+90,得a=50,
当x=40时,y=-0.5×40+65=45,
40×50-40×45
=2000-1800
=200(万元),
答:该厂第一个月销售这种机器的总利润为200万元;
②设每台机器的利润为w万元,
W=(-x+90)-(-0.5x+65)=-x+25,
∵10≤x≤70,且为整数,
∴当x=10时,w取得最大值,
答:每个月生产10台这种机器才能使每台机器的利润最大.
故答案为(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
17、详见解析.
【解析】
根据已知条件易证△ADE≌△FCE,由全等三角形的性质可得AE=EF,已知BE⊥AE,根据等腰三角形三线合一的性质即可证明△ABF是等腰三角形
【详解】
∵AD∥BC,
∴∠ADC=∠ECF,
∵E是CD的中点,
∴DE=EC.
在△ADE与△FCE中, ,
∴△ADE≌△FCE(ASA),
∴AE=EF,
∵BE⊥AE,
∴△ABF是等腰三角形.
本题考查了全等三角形的判定与性质、等腰三角形的判定与性质,利用全等三角形的性质证得AE=EF是解决问题的关键.
18、,
【解析】
根据分式的减法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
【详解】
解:
,
当时,原式.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、6
【解析】
先证明△ABC是等边三角形,得出AC=AB,再得出OA,根据勾股定理求出OB,即可得出BD.
【详解】
如图,
∵菱形ABCD中,AE垂直平分BC,
∴AB=BC,AB=AC,OA=AC,OB=BD,AC⊥BD,
∴AB=BC=AC=6,
∴OA=3,
∴OB=,
∴BD=2OB=6,
故答案为:6.
本题考查了菱形的性质、勾股定理的运用;熟练掌握菱形的性质,证明等边三角形和运用勾股定理求出OB是解决问题的关键.
20、或
【解析】
当点C在AB上方时,过点C作CE⊥y轴于点E,易证△AOB≌△BEC(AAS),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C的坐标为(2,6),同理可得当点C在AB下方时,点C的坐标为:(-2,-2).
【详解】
解:如图所示,当点C在AB上方时,过点C作CE⊥y轴于点E,
∵,,四边形为正方形,
∴∠BEC=∠AOB=90°,BC=AB,
∵∠BCE+∠EBC=90°,∠OBA+∠EBC=90°,
∴∠BCE=∠OBA,
∴△AOB≌△BEC(AAS),
∴BE=AO=4,EC=OB=2,
∴OE=OB+BE=6,
∴此时点C的坐标为:(2,6),
同理可得当点C在AB下方时,点C的坐标为:(-2,-2),
综上所述,点C的坐标为:或
故答案为:或.
本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解.
21、
【解析】
【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..
【详解】设点P坐标为(a,0)
则点A坐标为(a,),B点坐标为(a,﹣)
∴S△ABC=S△ABO =S△APO+S△OPB==,
故答案为.
【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.
22、金额与数量
【解析】
根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故答案为:金额与数量.
本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.
23、﹣1或3
【解析】
把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
【详解】
解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
∴a=2,b=2,
∴点A(1,2)与点B(2,1),
延长AB交x轴于点C,如图2,
设直线AB的解析式为y=mx+n,
则有,
解得,
∴直线AB的解析式为y=﹣x+1.
∵点C是直线y=﹣x+1与x轴的交点,
∴点C的坐标为(1,0),OC=1,
∵S△PAB=2,
∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
∴PC=2.
∵C(1,0),P(m,0),
∴|m﹣1|=2,
∴m=﹣1或3,
故答案为:﹣1或3.
本题考查的是反比例函数,熟练掌握反比例函数图像上点的特征是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)∠B=70°.
【解析】
(1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;
(2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.
【详解】
(1) 证明:过C作CE∥AD于点E,
∵AB∥DC,CE∥AD
∴四边形ADCE是平行四边形,
∴AD=CE,
∵AD∥CE,
∴∠A=∠CEB,
∵∠A=∠B,
∴∠CEB=∠B,
∴CE=CB,
∴AD=CB;
(2)过C作CE∥AD于点E,
∵AB∥DC,CE∥AD
∴四边形ADCE是平行四边形,
∴AD=CE,
∵AD=BC,
∴CE=CB,
∴∠B=∠CEB,
∵AD∥CE,
∴∠A=∠CEB,
∴∠B=∠A=70°.
本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.
25、(1)OF =4;(2)①证明见解析;② k=;③96-16或36-4.
【解析】
分析(1)由y=经过点B (2,4).,求出k的值,再利用F在直线y = x,求出m的值,最后利用勾股定理求解即可;(2) ①利用反比例函数k的几何意义可求解; ②Rt△EBD中,分别用n表示出BD、BE、DE,再利用勾股定理解答即可; ③分三种情况讨论即可:OE=OD;
OE=DE;OD=DE.
详解:(1)∵F在直线y=x上
∴设F(m,m)
作FM⊥x轴
∴FM=OM=m
∵y=经过点B (2,4).
∴k=8
∴
∴
∴
∴OF =4;
(2)①∵函数 的图象经过点D,E
∴,∵ OC=2,OA=4
∴CO=2AE
②由①得:CD=2AE
∴可设:CD=2n,AE=n
∴DE=CD+AE=3n
BD=4-2n, BE=2-n
在Rt△EBD,由勾股定理得:
∴
解得
③CD=2c,AE=c
情况一:若OD=DE
∴
∴
∴
情况二:若OE=DE
∴
∴
情况三:OE=OD 不存在.
点睛:本题考查了反比例函数的性质,利用反比例函数的解析式求点的坐标,利用勾股定理得到方程,进而求出线段的长,注意解题时分类讨论的思想应用.
26、解:(1),,
(2)70元.
【解析】
(1)80-x,200+10x,800-200-(200+10x);
(2)根据题意,得
80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -2×800=1.
整理,得x2-20x+100=0,解这个方程得x1= x2=10,
当x=10时,80-x=70>2.
答:第二个月的单价应是70元.
【详解】
请在此输入详解!
题号
一
二
三
四
五
总分
得分
购买方式
标价(元条)
优惠条件
实体店
40
全部按标价的8折出售
网店
40
购买100或100条以下,按标价出售;购买100条以上,从101条开始按标价的7折出售(免邮寄费)
x单位:台)
10
20
30
y(单位:万元/台)
60
55
50
2024年湖北恩施崔坝中学数学九上开学质量检测试题【含答案】: 这是一份2024年湖北恩施崔坝中学数学九上开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北恩施白杨九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2024年湖北恩施白杨九年级数学第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北恩施崔坝中学2023-2024学年数学九上期末质量跟踪监视试题含答案: 这是一份湖北恩施崔坝中学2023-2024学年数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了要使有意义,则x的取值范围为等内容,欢迎下载使用。