2025届北京市通州区九级数学九年级第一学期开学考试试题【含答案】
展开
这是一份2025届北京市通州区九级数学九年级第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列实数中,能够满足不等式的正整数是( )
A.-2B.3C.4D.2
2、(4分)如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
3、(4分)如图,图中的小正方形的边长为1,到点A的距离为的格点的个数是( )
A.7B.6C.5D.4
4、(4分)运用分式基本性质,等式中缺少的分子为( )
A.aB.2aC.3aD.4a
5、(4分)下列说法中错误的是( )
A.四个角相等的四边形是矩形B.四条边相等的四边形是正方形
C.对角线相等的菱形是正方形D.对角线垂直的矩形是正方形
6、(4分)已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为( )
A.1B.2C.-2D.-1
7、(4分)已知一组数据:10,8,6,10,8,13,11,12,10,10,7,9,8,12,9,11,12,9,10,11,则分组后频率为0.2的一组是( )
A.6~7 B.8~9 C.10~11 D.12~13
8、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.3,4,5B.13,14,15C.5,12,13D.15,8,17
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.
10、(4分)某一次函数的图象经过点(3,),且函数y随x的增大而增大,请你写出一个符合条件的函数解析式______________________
11、(4分)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2018BC和∠A2018CD的平分线交于点A2019,得∠A2019,则∠A2019=_____°.
12、(4分)如图,将矩形沿折叠,使点落在边上的点处,点落在点处,已知,连接,则__________.
13、(4分)函数y=中自变量x的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,,平分交于点,于点,交于点,连接,求证:四边形是菱形.
15、(8分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
16、(8分)(1)计算
(2)解不等式组,并写出不等式组的非负整数解。
(3)解分式方程:
17、(10分)阅读下列材料,然后解答下列问题:
在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:
(一) ;
(二) ;
(三) .
以上这种化简的方法叫分母有理化.
(1)请用不同的方法化简:
①参照(二)式化简=__________.
②参照(三)式化简=_____________
(2)化简:.
18、(10分)综合与实践
如图,为等腰直角三角形,,点为斜边的中点,是直角三角形,.保持不动,将沿射线向左平移,平移过程中点始终在射线上,且保持直线于点,直线于点.
(1)如图1,当点与点重合时,与的数量关系是__________.
(2)如图2,当点在线段上时,猜想与有怎样的数量关系与位置关系,并对你的猜想结果给予证明;
(3)如图3,当点在的延长线上时,连接,若,则的长为__________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)正比例函数y=kx的图象与直线y=﹣x+1交于点P(a,2),则k的值是_____.
20、(4分)命题“如果a2=b2,那么a=b.”的否命题是__________.
21、(4分)学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
22、(4分)如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.
23、(4分)计算的结果为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4)
(1)求m的值及一次函数y=kx+b的表达式;
(2)观察函数图象,直接写出关于x的不等式x≤kx+b的解集;
(3)若P是y轴上一点,且△PBC的面积是8,直接写出点P的坐标.
25、(10分)某商店购进一批小家电,单价40元,第一周以每个52元的价格售出180个,商店为了适当增加销量,第二周决定降价销售。根据市场调研,售价每降1元,一周可比原来多售出10个,已知商店两周共获利4160元,问第二周每个小家电的售价降了多少元?
26、(12分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
将各项代入,满足条件的即可.
【详解】
A选项,-2不是正整数,不符合题意;
B选项,,不符合题意;
C选项,,不符合题意;
D选项,,符合题意;
故选:D.
此题主要考查不等式的正整数解,熟练掌握,即可解题.
2、C
【解析】
根据轴对称和中心对称图形的概念可判别.
【详解】
(A)既不是轴对称也不是中心对称;
(B)是轴对称但不是中心对称;
(C)是轴对称和中心对称;
(D)是中心对称但不是轴对称
故选:C
3、B
【解析】
根据勾股定理、结合图形解答.
【详解】
解:∵,
∴能够成直角三角形的三边应该是1、2、,
∴到点A的距离为的格点如图所示:
共有6个,
故选:B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么.
4、D
【解析】
根据分式的基本性质即可求出答案.
【详解】
解:,
故选择:D.
本题考查分式的运算,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
5、B
【解析】
根据矩形和正方形的性质和判定进行分析即可.
【详解】
A、四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;
B、四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
C、对角线相等的菱形是正方形,该说法正确,不符合题意;
D、对角线垂直的矩形是正方形,该说法正确,不符合题意.
故选B.
考核知识点:正方形和矩形的判定.理解定理是关键.
6、C
【解析】
直接把点(1,-2)代入反比例函数y= 即可得出结论.
【详解】
∵反比例函数y=的图象过点A(1,−2),
∴−2= ,
解得k=−2.
故选C.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
7、D
【解析】分析:分别计算出各组的频数,再除以10即可求得各组的频率,看谁的频率等于0.1.
详解:A中,其频率=1÷10=0.1;
B中,其频率=6÷10=0.3;
C中,其频率=8÷10=0.4;
D中,其频率=4÷10=0.1.
故选:D.
点睛:首先数出数据的总数,然后数出各个小组内的数据个数,即频数.根据频率=频数÷总数进行计算.
8、B
【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.
【详解】
解:A选项中,,∴能构成直角三角形;
B选项中,,∴不能构成直角三角形;
C选项中,,∴能构成直角三角形;
D选项中,,∴能构成直角三角形;
故选B.
本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、三角形的中位线等于第三边的一半
【解析】
∵D,E分别是AC,BC的中点,
∴DE是△ABC的中位线,
∴DE=AB,
设DE=a,则AB=2a,
故答案是:三角形的中位线等于第三边的一半.
10、y=x-4
【解析】
首先设一次函数解析式为y=kx+b,根据y随x的增大而增大可选取k=1(k取任意一个正数即可),再把点(3,﹣1)代入可得﹣1=3+b,计算出b的值,进而可得解析式.
【详解】
∵函数的值随自变量的增大而增大,
∴该一次函数的解析式为y=kx+b(k>0),
∴可选取k=1,
再把点(3,﹣1)代入:﹣1=3+b,
解得:b=-4,
∴一次函数解析式为y=x-4,
故答案为:y=x-4(答案不唯一).
本题考查一次函数的性质,掌握一次函数图象与系数的关系是解题的关键.
11、
【解析】
根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,然后整理得到∠A1=∠A;
【详解】
∵∠ABC与∠ACD的平分线交于点A1,
∴∠A1BC=∠ABC,∠A1CD=∠ACD,
由三角形的外角性质,∠ACD=∠A+∠ABC,
∠A1CD=∠A1+∠A1BC,(∠A+∠ABC)=∠A1+∠A1BC=∠A1+∠ABC,
整理得,∠A1=∠A=×m°=°;
同理可得∠An=()n×m,
所以∠A2019=()2019×m=.
故答案是:.
考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质与定义并求出后一个角是前一个角的是解题的关键.
12、75°
【解析】
【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.
【详解】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,
∴∠EBG=∠EGB,
∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,
又∵AD∥BC,
∴∠AGB=∠GBC,
∴∠AGB=∠BGH,
∵∠DGH=30°,
∴∠AGH=150°,
∴∠AGB=∠AGH=75°,
故答案为:75°.
【点睛】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
13、x⩽2且x≠−1.
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,2−x⩾0且x+1≠0,
解得x⩽2且x≠−1.
故答案为:x⩽2且x≠−1.
此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
根据题意首先利用ASA证明,再得出四边形是平行四边形,再利用四边相等来证明四边形是菱形即可.
【详解】
证明:∵,
∴,
∵平分交于点,
∴,
∴,
∴,
∵,
∴,
在和中
,,,
∴,
∴,
∴四边形是平行四边形,
∵,
∴四边形是菱形
此题考查全等三角形的判定与性质,平行四边形的判定,菱形的判定,解题关键在于利用平行线的性质来求证.
15、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
16、①+2;②0、1;③原方程无解.
【解析】
(1)首先计算负指数次幂,0次幂,二次根式的混合运算,去掉绝对值符号,化简二次根式,然后合并同类二次根式即可求解;(2)首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.(3)中因为x2-4=(x+2)(x-2),所以最简公分母为(x+2)(x-2),确定方程的最简公分母后,方程两边乘最简公分母,把分式方程转化为整式方程求解. .
【详解】
解(1)原式=3-1-(1-)+-1
=3-1-1++2-1
=+2
(2)
解不等式①得,x≤1,
解不等式②得,x<4,
所以不等式组的解集是x≤1,
所以不等式组的非负整数解是0、1.
故答案为:0、1.
(3)方程两边同乘(x+2)(x-2),
得:(x-2)2=(x+2)2+16,
整理解得x=-2.
经检验x=-2是增根,
故原方程无解.
(1)本题考查实数的混合运算、解不等式组和解分式方程;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,去分母时要注意符号的变化.
17、见解析.
【解析】
(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;
(2)原式各项分母有理化,计算即可.
【详解】
解:(1)①;
②;
(2)原式
故答案为:(1)①;②
此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.
18、(1);(2),,见解析;(3)
【解析】
(1)根据等腰直角三角形的性质证明OA=OC,∠A=∠C,然后证明 ≌即可得到OE=OF;
(2)根据等腰直角三角形的性质证明OA=OB,∠A=∠OBF,利用矩形的判定证明PEBF是矩形,从而得到BF=AE,于是可证明 ≌,即可得到,;
(3)同(2)类似,证明,,然后根据勾股定理即可求出EF的长.
【详解】
解:(1)=,理由如下:
∵为等腰直角三角形,,点为斜边的中点,
∴OA=OC,∠A=∠C,
∵,,
∴,
∴ ≌,
∴.
故答案是:.
(2), ,理由如下:
如图2,连接OB,
∵为等腰直角三角形,点为斜边的中点,
∴OA=OB,∠A=∠OBF=, ∠AOB=,
∵,
∴∠A=∠APE=,
∴AE=PE,
∵,,,
∴PEBF是矩形,
∴BF=PE,
∴BF=AE,
在 和中,
,
∴ ≌,
∴,,
∴,
∴.
故答案是:,.
(3)如图3,连接EF、OB,
∵为等腰直角三角形,点为斜边的中点,
∴OA=OB,∠BAO=∠OBC=, ∠AOB=,
∴∠EAO=∠OBF=,
∵,
∴∠APE=∠PAE=,
∴AE=PE,
∵,,,
∴PEBF是矩形,
∴BF=PE,
∴BF=AE,
在 和中,
,
∴ ≌,
∴,,
∴,
∴.
∴是等腰直角三角形,
∵OE=1,
∴EF=.
故答案是:.
本题考查了矩形的判定和性质,利用等腰直角三角形的性质得到边角关系从而证明三角形全等是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
将点P的坐标代入两个函数表达式即可求解.
【详解】
解:将点P的坐标代入两个函数表达式得:
,
解得:k=-1.
故答案为:-1.
本题考查的是直线交点的问题,只需要把交点坐标代入两个函数表达式即可求解.
20、如果,那么
【解析】
根据否命题的定义,写出否命题即可.
【详解】
如果,那么
故答案为:如果,那么.
本题考查了否命题的问题,掌握否命题的定义以及性质是解题的关键.
21、0.4m
【解析】
先证明△OAB∽△OCD,再根据相似三角形的对应边成比例列方程求解即可.
【详解】
∵AB⊥BD,CD⊥BD,
∴∠ABO=∠CDO.
∵∠AOB=∠COD,
∴△OAB∽△OCD,
∴AO:CO=AB:CD,
∴4:1=1.6:CD,
∴CD=0.4.
故答案为:0.4.
本题主要考查了相似三角形的应用,正确地把实际问题转化为相似三角形问题,利用相似三角形的判定与性质解决是解题的关键.
22、
【解析】
连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.
【详解】
连接BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴
∴
则
∵FE=BE=EC,
∴
∴
故答案为
考查翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置不变,对应边和对应角相等是解题的关键.
23、x﹣1
【解析】
同分母的分式相加,分母不变分子做加减法,然后再讲答案化简即可
【详解】
,故填x-1
本题考查分式的简单计算,熟练掌握运算法则是解题关键
二、解答题(本大题共3个小题,共30分)
24、(1)y=x+2;(2)x≤3;(3)P 的坐标为(0,)或(0,﹣).
【解析】
(1)把点C(m,4)代入正比例函数y=x即可得到m的值,把点A和点C的坐标代入y=kx+b求得k,b的值即可;
(2)根据图象解答即可写出关于x的不等式x≤kx+b的解集;
(3)点C的坐标为(3,4),说明点C到y轴的距离为3,根据△BPC的面积为8,求得BP的长度,进而求出点P的坐标即可.
【详解】
(1)∵点C(m,4)在正比例函数的y=x图象上,
∴m=4,
∴m=3,
即点C坐标为(3,4),
∵一次函数 y=kx+b经过A(﹣3,0)、点C(3,4)
∴,
解得:,
∴一次函数的表达式为:y=x+2;
(2)由图象可得不等式x≤kx+b的解为:x≤3;
(3)把x=0代入y=x+2得:y=2,
即点B的坐标为(0,2),
∵点P是y轴上一点,且△BPC的面积为8,
∴×BP×3=8,
∴PB=,
又∵点B的坐标为(0,2),
∴PO=2+=,或PO=-+2=-,
∴点P 的坐标为(0,)或(0,﹣).
本题考查了待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,分析图象并结合题意列出符合要求的等式是解题的关键.
25、第二周每个小家电的销售价格降了2元
【解析】
设第二周每个小家电的售价降了x元,根据第二周的销量乘以每个的利润加上第一周的销量乘以每个的利润等于4160元,列出方程,求解即可.
【详解】
解:设第二周每个小家电的销售价格降了x元.
根据题意,得,
即.
解这个方程,得,(不符合题意,舍去.)
答:第二周每个小家电的销售价格降了2元.
本题考查了一元二次方程在成本利润问题中的应用,明确销量乘以每个的利润等于总利润是列方程解题的关键.
26、见解析
【解析】
由菱形的性质可得,,然后根据角角边判定,进而得到.
【详解】
证明:∵菱形ABCD,
∴,,
∵,,
∴,
在与中,
,
∴,
∴.
本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2025届北京市西城区名校数学九年级第一学期开学考试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届北京市通州区数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届北京市大兴区名校数学九年级第一学期开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。