2024年陕西省西安市碑林区西北工大附中九年级数学第一学期开学经典试题【含答案】
展开
这是一份2024年陕西省西安市碑林区西北工大附中九年级数学第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)以下列各组线段为边,能构成直角三角形的是 ( )
A.8cm,9cm,10cmB.cm,cm,cm
C.1cm,2cm,cmD.6cm,7cm,8cm
2、(4分)边长为4的等边三角形的面积是( )
A.4B.4C.4D.
3、(4分)若关于x的一元二次方程有一个根为0,则a的值为( )
A.B.C.D.2
4、(4分)下列二次根式中,可与合并的二次根式是
A.B.C.D.
5、(4分)关于一次函数,下列结论正确的是
A.图象经过B.图象经过第一、二、三象限
C.y随x的增大而增大D.图象与y轴交于点
6、(4分)的三边长分别为,下列条件:①;②;③;④其中能判断是直角三角形的个数有( )
A.个B.个C.个D.个
7、(4分)如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为( )
A.2B.6C.3或6D.2或3或6
8、(4分)如图,要测量被池塘隔开的A、C两点间的距离,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E、F,量得EF两点间距离等于23米,则A、C两点间的距离为()米
A.23B.46C.50D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两人面试和笔试的成绩如下表所示:
某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取________。
10、(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.
11、(4分)一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________
12、(4分)若某多边形有5条对角线,则该多边形内角和为_____.
13、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,直线分别与轴,轴交于点.点是轴负半轴上一点,
(1)求点和点的坐标;
(2)求经过点和的一次函数的解析式.
15、(8分)西蜀图书室近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.
(1)求甲、乙两种图书每本的进价分别是多少元?
(2)西蜀图书室计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?
16、(8分)如图,△ABC中,AB=10,BC=6,AC=8.
(1)求证:△ABC是直角三角形;
(2)若D是AC的中点,求BD的长.(结果保留根号)
17、(10分)如图,已知,直线y=2x+3与直线y=-2x-1,求ΔABC的面积.
18、(10分)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
(1)求点D的坐标.
(2)求直线BC的解析式.
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)据统计,2019年全国高考报名人数达10310000人,比去年增加了560000,其中数据10310000用科学计数法表示为_________
20、(4分)在一次函数y=(m-1)x+6中,y随x的增大而增大,则m的取值范围是______.
21、(4分)在市业余歌手大奖赛的决赛中,参加比赛的名选手成绩统计如图所示,则这名选手成绩的中位数是__________.
22、(4分)如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.
23、(4分)计算:______.
二、解答题(本大题共3个小题,共30分)
24、(8分)判断代数式的值能否等于-1?并说明理由.
25、(10分)已知:,与成正比例,与成反比例,且时,;时.
(1)求关于的函数关系式.
(2)求时,的值.
26、(12分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理的逆定理对四组数据进行逐一判断即可.
【详解】
A.∵82+92≠102,∴不能构成直角三角形;
B.∵,∴不能构成直角三角形;
C.∵,∴能构成直角三角形;
D.∵62+72≠82,∴不能构成直角三角形.
故选C.
本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.
2、C
【解析】
如图,根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.
【详解】
解:如图,∵△ABC是等边三角形,AD⊥BC,
∴BD=DC=2,
在Rt△ABD中,AB=4,BD=2,
∴AD=,
∴S△ABC=BC·AD==4,
故选C.
本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.
3、C
【解析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值.
【详解】
把x=0代入方程有:
a2-4=0,
a2=4,
∴a=±2;
∵a-2≠0,
∴a=-2,
故选C.
本题考查的是一元二次方程的解,把方程的解代入方程可以求出字母系数的值.根据根与系数的关系,由两根之和可以求出方程的另一个根.
4、A
【解析】
根据最简二次根式的定义,对每一个选项进行化简即可.
【详解】
A、,与是同类二次根式,可以合并,该选项正确;
B、,与不是同类二次根式,不可以合并,该选项错误;
C、与不是同类二次根式,不可以合并,该选项错误;
D、,与不是同类二次根式,不可以合并,该选项错误;
故选择:A.
本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.
5、D
【解析】
根据一次函数的性质,依次分析各个选项,选出正确的选项即可.
【详解】
A.把x=3代入y=﹣2x+3得:y=﹣6+3=﹣3,即A选项错误;
B.一次函数y=﹣2x+3的图象经过第一、二、四象限,即B选项错误;
C.一次函数y=﹣2x+3的图象上的点y随x的增大而减小,即C选项错误;
D.把x=0代入y=﹣2x+3得:y=3,图象与y轴交于点(0,3),即D选项正确.
故选D.
本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握一次函数的性质是解题的关键.
6、C
【解析】
判定直角三角形的方法有两个:一是有一个角是的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足,其中边c为斜边.
【详解】
解:由三角形内角和定理可知,
①中,,
,
,能判断是直角三角形,①正确,
③中, ,,不是直角三角形,③错误;
②中化简得 即 ,边b是斜边,由勾股逆定理是直角三角形,②正确;
④中经计算满足,其中边c为斜边,由勾股逆定理是直角三角形,④正确,所以能判断是直角三角形的个数有3个.
故答案为:C
本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.
7、C
【解析】
分以下两种情况求解:①当点B′落在矩形内部时,连接AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△B′EC为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时.此时四边形ABEB′为正方形,求出BE的长即可.
【详解】
解:当△B′EC为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.连结AC,
在Rt△ABC中,AB=1,BC=8,
∴AC==10,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△B′EC为直角三角形时,得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,
∴EB=EB′,AB=AB′=1,
∴CB′=10﹣1=4,
设BE=x,则EB′=x,CE=8﹣x,
在Rt△B′EC中,
∵EB′2+CB′2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②当点B′落在AD边上时,如图2所示.
此时ABEB′为正方形,
∴BE=AB=1.
综上所述,BE的长为3或1.
故选:C.
本题考查了折叠变换的性质、直角三角形的性质、矩形的性质,正方形的判定等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键.
8、B
【解析】
先判断出EF是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2EF.
【详解】
解:∵点E、F分别是BA和BC的中点,
∴EF是△ABC的中位线,
∴AC=2EF=2×23=46米.
故选:B.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并准确识图是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、乙
【解析】
根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.
【详解】
甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
因为乙的平均分数最高,
所以乙将被录取.
故答案为乙.
此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
10、14cm或16cm
【解析】
试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.
解:如图,∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当AB=BE=2cm,CE=3cm时,
则周长为14cm;
②当AB=BE=3cm时,CE=2cm,
则周长为16cm.
故答案为14cm或16cm.
考点:平行四边形的性质.
11、
【解析】
由抛物线的顶点坐标为(4,3),可设其解析式为,再将(0,)代入求出a的值即可.
【详解】
解:由图知,抛物线的顶点坐标为(4,3),
故设抛物线解析式为,
将点(0,)代入,得:,
解得,
则抛物线解析式为,
故答案为:.
本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
12、540°.
【解析】
根据多边形对角线的条数求出多边形的边数,再根据多边形的内角和公式求出即可.
【详解】
设多边形的边数为n,
∵多边形有5条对角线,
∴=5,
解得:n=5或n=﹣2(舍去),
即多边形是五边形,
所以多边形的内角和为(5﹣2)×180°=540°,
故答案为:540°.
本题考查了多边形的对角线和多边形的内角,能正确求出多边形的边数是解此题的关键,注意:边数为n的多边形的对角线的条数是,边数为n的多边形的内角和=(n-2)×180°.
13、1
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+1×30%+88×50%=1(分).
即小彤这学期的体育成绩为1分.
故答案为:1.
本题考查加权平均数,掌握加权平均数的计算公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)点坐标为,B点坐标为;(2)
【解析】
(1)分别令y=0和x=0即可求出A,B两点坐标;
(2)根据等腰三角形的性质得出点C的坐标,再利用待定系数法求出直线AC的解析式即可.
【详解】
(1)由图可知:点纵坐标为0,将代人,得,
所以点坐标为
B点横坐标为,将代入得,
所以点坐标为;
(2)∵A(4,0),B(0,3)
∴AO=4,BO=3,
∴
点坐标为
设过点的一次函数的解析式为,
将A(4,0),C(0,-2)分别代入,得,
解得,,
经过点和的一次函数的解析式为
此题主要考查了一次函数解析式以及与坐标轴交点的求法,熟练掌握待定系数法是解题的关键.
15、(1)甲种图书每本的进价为1元,乙种图书每本的进价是45元;(2)最多购进甲种图书2本.
【解析】
试题分析:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,根据花780元购进甲图书的数量与花540元购进乙图书的数量相同,列方程求解;
(2)设购进甲种图书m本,则购进乙种图书为(70-m)本,根据总购书费用不超过4000元,列不等式求解.
试题解析:
解:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,
由题意得, =,
解得:x=45,
经检验,x=45是原分式方程的解,且符合题意,
则x+20=1.
答:甲种图书每本的进价为1元,乙种图书每本的进价是45元;
(2)设购进甲种图书m本,则购进乙种图书为(70﹣m)本,
由题意得,1m+45(70﹣m)≤4000,
解得:m≤2.5,
∵m为整数,且取最大值,
∴m=2.
答:最多购进甲种图书2本.
点睛:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系或不等关系,列方程或不等式求解.
16、 (1)见解析;(2)2.
【解析】
分析:(1)直接根据勾股定理逆定理判断即可;
(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.
详解:(1)∵AB2=100, BC2=36, AC2=64,
∴AB2=BC2+AC2,
∴△ABC是直角三角形.
(2)CD=4,在Rt△BCD中,
BD=.
点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
17、2
【解析】
将直线y=2x+3与直线y=−2x−1组成方程组,求出方程组的解即为C点坐标,再求出A、B的坐标,得到AB的长,即可求出△ABC的面积.
【详解】
解:将直线y=2x+3与直线y=-2x-1联立成方程组得:
解得,即C点坐标为(-1,1).
∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=-2x-1与y轴的交点坐标为(0,-1),
∴AB=4,
∴.
本题考查了两条直线相交的问题,熟知函数图象上点的坐标特征是解题的关键.
18、(1)D(4,7)(2)y=(3)详见解析
【解析】
试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
试题解析:(1)x2﹣7x+12=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
过D作DE⊥y于点E,
∵正方形ABCD,
∴AD=AB,∠DAB=90°,
∠DAE+∠OAB=90°,
∠ABO+∠OAB=90°,
∴∠ABO=∠DAE,
∵DE⊥AE,
∴∠AED=90°=∠AOB,
∵DE⊥AE
∴∠AED=90°=∠AOB,
∴△DAE≌△ABO(AAS),
∴DE=OA=4,AE=OB=3,
∴OE=7,
∴D(4,7);
(2)过点C作CM⊥x轴于点M,
同上可证得△BCM≌△ABO,
∴CM=OB=3,BM=OA=4,
∴OM=7,
∴C(7,3),
设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
代入B(3,0),C(7,3)得,,
解得,
∴y=x﹣;
(3)存在.
点P与点B重合时,P1(3,0),
点P与点B关于点C对称时,P2(11,6).
考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.031×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将10310000科学记数法表示为:1.031×1.
故答案为:1.031×1.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
20、m>1
【解析】
由一次函数的性质可得到关于m的不等式,可求得m的取值范围.
【详解】
解:∵一次函数y=(m-1)x+6,若y随x的增大而增大,
∴m-1>0,解得m>1,
故答案为:m>1.
本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
21、8.5
【解析】
根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.
【详解】
根据图形,这个学生的分数为:,,,,,,,,,,则中位数为.
本题考查求中位数,解题的关键是掌握求中位数的方法.
22、6a
【解析】
根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.
【详解】
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵DE∥BC,
∴∠ADE=∠C,∠EDB=∠CBD,
∵DE平分∠ADB,
∴∠ADE=∠EDB,
∴∠CBD=∠C,
∴∠ABC=2∠C,
∵∠A=90°,
∴∠ABC+∠C=90°,
∴∠C=30°,
∴∠ADE=30°,
∵AE=a,
∴DE=2a,
∵∠EDB=∠DBC,
∠DBE=∠EBD,
∴BE=DE=2a,
∴AB=3a,
∴BC=2AB=6a.
故答案为:6a.
本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.
23、
【解析】
根据三角形法则依次进行计算即可得解.
【详解】
如图,
∵=,
,
∴.
故答案为:.
本题考查了平面向量,主要利用了三角形法则求解,作出图形更形象直观并有助于对问题的理解.
二、解答题(本大题共3个小题,共30分)
24、不能,理由见解析
【解析】
先将原代数式化简,再令化简后的结果等于-1,解出a的值,由结合分式存在的意义可以得出结论.
【详解】
原式= .
当 =−1时,解得:a=0,
∵(a+1)(a−1)a≠0,即a≠±1,a≠0,
∴代数式的值不能等于−1.
此题考查分式的化简求值,解题关键在于掌握运算法则
25、(1),(2).
【解析】
(1)先由y 与成正比例函数关系,y与x成反比例函数关系可设,,进而得到;再将x=1,y=3和x=-1,y=1分別代入得到再求解即可
(2)将代入函数表达式计算,即可求出y的值
【详解】
(1)设,,
,
,
把,代入得:①,
把代入得:②,
①,②联立,解得:,,
即关于的函数关系式为,
(2)把代入,
解得.
此题考查待定系数法求正比例函数解析式,待定系数法求一次函数解析式,待定系数法求反比例函数解析式,解题关键在于设,
26、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;
(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
【详解】
(1)当时,
设关于的函数表达式是,
,得,
即当,关于的函数表达式是.
(2)设段对应的函数解析式为,
得
即段对应的函数表达式为.
当时,,
即点的坐标为.
(3)(千米),
答:高铁在时段共行驶了千米.
考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
候选人
甲
乙
测试成绩(百分制)
面试成绩
86
92
笔试成绩
90
83
相关试卷
这是一份2024年陕西省西安市碑林区西北工大附中中考数学五模试卷,共27页。
这是一份2023-2024学年陕西省西安市碑林区西北工大附中九年级(上)开学数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年陕西省西安市碑林区西北工大附中中考数学四模试卷(含答案),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。